Blog
/
Identity
/
May 19, 2023

Darktrace Stops Large-Scale Account Hijack

Learn how Darktrace detected and stopped a large-scale account hijack that led to a phishing attack. Protect your business with these insights.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2023

Introduction 

As malicious actors across the threat landscape continue to take advantage of the widespread adoption of Software-as-a-Service (SaaS) platforms and multi-factor authentication (MFA) services to gain unauthorized access to organizations’ networks, it is crucial to have appropriate security tools in place to defend against account compromise at the earliest stage.

One method frequently employed by attackers is account takeover. Account takeovers occur when a threat actor exploits credentials to login to a SaaS account, often from an unusual location where the genuine actor does not usually login from. 

Access to these accounts can be caused by harvesting credentials through phishing emails and password spray attacks, or by exploiting insecure cloud safety practices such as not having MFA enabled on user accounts, requiring only user credentials for authentication. Once the integrity of the account is compromised, the threat actor can conduct further activity, such as delivering malware, reading and exfiltrating sensitive data, and sending out phishing emails to harvest further internal and external user credentials, repeating the attack cycle [1,2]. 

In early 2023, Darktrace detected a large-scale account takeover and phishing attack on the network of a customer in the education sector that affected hundreds of accounts and resulted in thousands of emails being forwarded outside of the network. The exceptional degree of visibility provided by Darktrace DETECT™ allowed for the detection of adversarial activity at every stage of the kill chain, and direct support from the Darktrace Analyst team via the Ask the Expert (ATE) service ensured the customer was fully informed and equipped to implement remedial action. 

Details of Attack Chain

Darktrace observed the same pattern of activity on all hijacked accounts on the customer’s network; login from unfamiliar locations, enablement of a mail forwarding rule that forwards all incoming emails to malicious email addresses, and the sending of phishing emails followed by their deletion. 

Figure 1: Timeline of attack on hijacked SaaS accounts.

Initial Access

Darktrace DETECT first detected anomalous SaaS activity on the customer environment on January 14, 2023, and then again on February 3, when multiple SaaS accounts were observed logging in from atypical locations with rare IP addresses and geographically impossible travel timings, or logging in whilst the account owner was active elsewhere. Subsequent investigation using open-source intelligence (OSINT) sources revealed one of the IP addressed had recently been associated with brute-force or password spray attempt.

This pattern of unusual login behavior persisted throughout the timeframe of the attack, with more unique accounts generating model breaches each day for similarly anomalous logins. As MFA authentication was not enforced for these user logins, the initial intrusion process was enabled by requiring only credentials for authentication.

Sending Emails 

The compromised accounts were also seen sending out emails with the subject ‘Email HELP DESK’ to external and internal recipients. This was likely represented a threat actor employing social engineering tactics to gain the trust of the recipient by posing as an internal help desk.

Mail Forwarding

Following the successful logins, compromised accounts began creating email rules to forward mail to external email addresses, some of which were associated with domains that had hits for malicious activity according to OSINT sources [3].

  • chotunai[.]com
  • bymercy[.]com
  • breazeim[.]com
  • brandoza[.]com

Forwarding mail is a commonly observed tactic during SaaS compromises to control lines of communication. Malicious actors often attempt to insert themselves into ongoing correspondence for illicit purposes, such as exfiltrating sensitive information, gaining persistent access to the compromised email or redirecting invoice payments. 

Email Deletions

Shortly after the mail forwarding activity, compromised accounts were detected performing anomalous email deletions en masse. Further investigation revealed that these accounts had previously sent a large volume of phishing emails and this mass deletion likely represented an attempt to conceal these activities by deleting them from their outboxes.

On February 10, the customer applied a mass password reset on all accounts that Darktrace had identified as compromised and provisioned, privileged accounts with MFA. They have indicated that those measures successfully halted the compromise, addressing the initial point of entry.  

Darktrace Coverage

Using its Self-Learning AI, Darktrace effectively demonstrated its ability to detect unusual SaaS activity that could indicate that an account has been hijacked by malicious actors. Rather than relying on a traditional rules and signature-based approach, Darktrace models develop an understanding of the network itself and can instantly recognize when a compromised deviates from its expected pattern of life.

Figure 2: Detection of unusual SaaS activity on hijacked SaaS account.

Initial Access

Initial access was detected by the following models:

  • Security Integration / High Severity Integration Detection  
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs 
  • SaaS / Access / Unusual External Source for SaaS Credential Use 
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active 

Initial access was also detected by the following Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account 

The model breaches and AI Analyst incidents detected logins from 100% rare external IP addresses in conjunction with a lack of MFA usage, as depicted in Figure 3.

Figure 3: Breach log showing initial detection of a SaaS login from a 100% rare IP where MFA was not used.
Figure 4: Initial detection of unusual SaaS activity visualized in Darktrace's SaaS console.

Mail Forwarding

Mail forwarding was detected by the following models:

  • SaaS / Admin / Mail Forwarding Enabled 

Compromised accounts were largely detected configuring mail forwarding rules to external email addresses, ostensibly to establish persistence on the network and exfiltrate sensitive correspondence.

Figure 5: The enablement of mail forwarding was detected as 100% new or uncommon for the account in question.

Mass Email Deletion

Mass email deletion was detected by the following models:

  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 
  • SaaS / Resource / Mass Email Deletes from Rare Location 
Figure 6: Compromised account deleting phishing emails it had previously sent from the outbox.

Darktrace detected accounts performing highly anomalous mass email deletions from rare locations. The actors deleted the email “Email HELP DESK” which was later confirmed as being the primary phishing email used in the attack. Deletions were observed on compromised accounts’ outboxes, presumably to conceal the malicious activity.

Darktrace also detected this linked pattern of activity in sequential models such as: 

  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 

Ask the Expert

The customer used the ATE service to request more technical information and support concerning the attack. Darktrace’s 24/7 team of analysts were able to offer expert assistance and further details to assist in the subsequent investigations and remediation steps. 

Further Detection and Response  

Unfortunately, the customer did not have Darktrace/Email™ enabled at the time of the attack. Darktrace/Email has visibility over inbound and outbound mail-flow which provides an oversight on potential data loss incidents. In this case, Darktrace DETECT/Email would have been able to provide full visibility over the phishing emails sent by the compromised accounts, as well as the attackers attempts to spoof an internal helpdesk. Further to this, the new Analysis Outlook integration helps employees understand why an email is suspicious and enables them report emails directly to the security team, which helps to continuously build user awareness of phishing attacks. 

Darktrace/Email also enhances Darktrace/Network™ detections by triggering ‘Email Nexus’ models within Darktrace/Network, where malicious activity is detected across the digital estate, correlating moving from SaaS compromised logins to mass email spam being sent out by compromised users

Figure 7: Email Nexus models within the Darktrace/Network enhanced by Darktrace/Email

Darktrace RESPOND™ was not enabled on the customer environment at the time of the attack; if it were, Darktrace would have been able to autonomously take action against the SaaS model breaches detecting across multiple of the kill chain. RESPOND would have disabled the hijacked accounts or force them to log out for a period of time, whilst also disabling the inbox rules that had been established by malicious actors. This would have given the customer’s security team valuable time to analyze the incident and mitigate the situation, preventing the attack from escalating any further. 

Conclusion

Ultimately, Darktrace demonstrated its unparalleled visibility over customer networks which allowed for the detection of this large-scale targeted SaaS account takeover, and the subsequent phishing attack. It underscores the importance of defense in depth; critically, MFA was not enforced for this environment which likely made the targeted organization far more susceptible to compromise via credential theft. The phishing activity detected by Darktrace following this account compromise also highlights the need for email protection in any security stack. 

Darktrace’s visibility meant allowed it to detect the attack at a high degree of granularity, including the account logins, email forwarding rule creations, outbound mail, and the mass deletions of phishing emails. Darktrace’s anomaly-based detection means it does not have to rely on signatures, rules or known indicators of compromise (IoCs) when identifying an emerging threat, instead placing the emphasis on recognizing a user’s deviation from its normal behavior.

However, without the presence of an autonomous response technology able to instantly intervene and stop ongoing attacks, organizations will always be reacting to attacks once the damage is done. Darktrace RESPOND is uniquely placed to take action against suspicious activity as soon as it is detected, preventing attacks from escalating and saving customers from significant disruption to their business.

Credit to: Zoe Tilsiter, Cyber Analyst, Gernice Lee, Cyber Analyst.

Appendices

Models Breached

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Admin / Mail Forwarding Enabled

SaaS / Compliance / Microsoft Cloud App Security Alert Detected

SaaS / Compromise / SaaS Anomaly Following Anomalous Login 

SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

SaaS / Compromise / Suspicious Login and Mass Email Deletes 

SaaS / Resource / Mass Email Deletes from Rare Location

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Unusual Activity / Activity from Multiple Unusual IPs

SaaS / Unusual Activity / Multiple Unusual SaaS Activities 

Security Integration / Low Severity Integration Detection

Security Integration / High Severity Integration Detection

List of IoCs

brandoza[.]com - domain - probable domain of forwarded email address

breazeim[.]com - domain - probable domain of forwarded email address

bymercy[.]com - domain - probable domain of forwarded email address

chotunai[.]com - domain - probable domain of forwarded email address

MITRE ATT&CK Mapping

Tactic: INITIAL ACCESS, PERSISTENCE, PRIVILEGE ESCILATION, DEFENSE EVASION

Technique: T1078.004 – Cloud Accounts

Tactic: COLLECTION

Technique: T1114- Email Collection

Tactic:COLLECTION

Technique: T1114.003- Email Forwarding Rule

Tactic: IMPACT

Technique: T1485- Data Destruction

Tactic: DEFENSE EVASION

Technique: T1578.003 – Delete Cloud Instance

References

[1] Darktrace, 2022, Cloud Application Security_ Protect your SaaS with Self-Learning AI.pdf

[2] https://www.cloudflare.com/en-gb/learning/access-management/account-takeover/ 

[3] https://www.virustotal.com/gui/domain/chotunai.com 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI