Blog
/
OT
/
January 9, 2024

Three Ways AI Secures OT & ICS from Cyber Attacks

Explore the three challenges facing industries that manage OT and ICS Systems, the benefits of adopting AI technology, and Darktrace / OT’s unique role!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2024

What is OT and ICS?

Operational technologies and industrial control systems are the networked technologies used for the automation of physical processes. These are the technologies that allow operators to control processes and retrieve real time process data from a factory, rail system, pipeline, and other industrial processes.  

The role of AI in defending OT/ICS networks  

While largely adopted by industrial organizations, OT is utilized by Critical Infrastructures, these being the industries that directly affect the health, safety, and welfare of the public. As these organizations expand and adopt new networked industrial technologies, they are simultaneously expanding their attack surface.  

With a larger attack surface, more attacks targeting OT/ICS, and focused coordination around cyber security from regulatory authorities, security personnel have increasing workloads that make it difficult to keep pace with threats and vulnerabilities. Defenders are managing growing attack surfaces due to IT and OT convergence. Thus, the adoption of AI technology to protect, detect, respond, and recover from cyber incidents in industrial systems is paramount for keeping critical infrastructure safe.

This blog will explore three challenges facing industries managing OT/ICS, the perceived benefits of adopting AI technology to address these challenges, and Darktrace/OT’s unique role in this process.  

Darktrace also delivers complete AI-powered solutions to defend US federal government customers from cyber disruptions and ensure mission resilience. Learn more about high fidelity detection in Darktrace Federal’s TAC report.

Figure 1: AI statistics from Gartner and Deloitte

Three ways AI helps improves OT/ICS security  

1. Anomaly detection and response

In this heightened security landscape, OT/ICS environments face a spectrum of external cyber threats that demand vigilant defense. From the looming risk of industrial ransomware to the threat of insiders, yet another dimension is added to security challenge, meaning security professionals must be equipped to detect and respond to internal and external threats.  

While threats are eminent from both inside and outside the organization, many organizations rely on Indicator of Compromises (IOCs) for threat detection. By definition, these solutions can only detect network activity they recognize as an indicator of compromise; therefore, often miss insider threats and novel (zero-day) attacks because the tactics, techniques, and procedures (TTPs) and attack toolkits have never been seen in practice.  

Anomaly-based detection is best suited to combat never-before-seen threats and signatureless threats from the inside. However, not all detection methods are equal. Most anomaly-based detection solutions that leverage AI rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. This data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.  

While this method reduces the workload for security teams who would have to input attack data otherwise manually, it runs the same risk of only detecting known threats and has potential privacy concerns when shipping this data externally.  

To improve the quality and speed of anomaly detection, Darktrace/OT uses Self-Learning AI that leverages Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks to learn your organization from the ground up in real time. By learning your unique organization, Darktrace/OT develops a sophisticated baseline knowledge of your network and assets, identifying abnormal activity that indicates a threat based on your unique network data at machine speed. Because the AI engine is local to the organization and/or assets, concerns of data residency and privacy are reduced, and the result is faster time to detect and triage incidents.  

Leveraging Self-Learning AI, Darktrace/OT uses autonomous response that severs only the anomalous or risky behaviors allowing the assets to continue to operate as normal. Organizations work with Darktrace to customize how they want Darktrace’s autonomous response to be applied. These options vary from on a device- by-device basis, device type by device type, or subnet by subnet basis and can be done completely autonomously or in human confirmation mode. This gives security teams more time to respond to an incident and reduces operational downtime when facing a threat.  

Darktrace leverages a combination of AI methods:

  • Self-Learning AI
  • Bayesian classification probabilistic models  
  • Deep neural networks
  • Transformers
  • Graph theory models
  • Clustering models  
  • Anomaly detection models
  • Generative and applied AI  
  • Natural language processing  
  • Supervised machine learning for investigation process of alerts

2. Vulnerability & Asset Management

At present, managing OT cyber risk is labor and resource intensive. Many organizations use third-party auditors to identify assets and vulnerabilities, grade compliance, and recommend improvements.  

At best, these exercises become tick-box exercises for companies to stay in compliance with little measurable reduction in cyber risk. At worst, asset owners can be left with a mountain of vulnerability information to work through, much of it irrelevant to the security risks Engineering and Operations teams deal with day to day, and increasingly out of date each passing day after the annual or biannual audit has been completed.  

In both cases, organizations are left using a patchwork of point products to address different aspects of preventative OT cyber security, most of which lack wider business context and lead to costly inefficiencies with no real impact to vulnerability or risk exposure.  

Darktrace’s technology helps in three unique ways:

  1. AI populates asset inventories: Self-Learning AI technology listens and learns from network traffic to populate or update asset inventories. It does this not just by identifying simple IPs, mac addresses, and hostnames, it learns from what it sees and automatically classifies or tags specific types of assets with the function that they perform. For example, if a specific device is performing functions like a PLC, sending commands to and from an HMI, it can appropriately tag and label these systems.
  2. AI prioritizes risk: Leveraging Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks, Darktrace/OT assesses the strategic risks facing your organization in real time. Using knowledge of data points on all your networked assets, data flow topology, your assets vulnerabilities and OSINT, Darktrace identifies and prioritizes high-value assets, potential attack pathways based on an existing vulnerabilities targetability and impact.
  3. AI explains remediation tactics: Many OT devices run 24/7 operations and cannot be taken offline to apply a patch, assuming a patch is even available. Darktrace/OT uses natural language processing to provide and explain prioritized remediation and mitigation associated with a given cyber risk across all MITRE ATT&CK techniques. Thus, where a CVE exists but a patch cannot be applied, a different technical mitigation can be recommended to remove a potential attack path before it can be exploited, preemptively securing vital internal systems and assets.
Figure 2: A critical attack path which starts with the compromise of a PC in the internal IT network, and ends with a PLC in the OT network. Each step is mapped out to the real world TTPs including abuse of SSH sessions and the modifications of ICS programs

3. Simplify compliance and reporting

Organizations, regardless of size or resources, have compliance regulations they need to adhere to. What this creates is an increased workload for security professionals. For smaller organizations, security teams might lack the manpower or resources to report in the short time frame that is required. For large organizations, keeping track of a massive amount of assets proves to be a challenge. Both cases emanate the risk of reporting fatigue where organizations might be hesitant to report incidents due to the complexity and time requirements they demand.  

An AI engine within the Darktrace/OT platform, Cyber AI analyst autonomously investigates incidents, summarize findings in natural language, and provides comprehensive insights into the nature and scope of cyber threats to improve the time it takes to triage and report on incidents. The ability to stitch together and present related security events provides a holistic understanding of the incident, enabling security analysts to identify patterns, assess the scope of potential threats, and prioritize responses effectively.  

Darktrace's detection capabilities identify every stage of an intrusion, from a compromised domain controller to network reconnaissance and privilege escalation. The AI technology is capable of detecting infections across several devices and generating incident reports that piece together disparate events to give a clear security narrative containing details of the attack, bridging the communication gap between IT and OT specialists.  

Post-incident, the technology assists in outlining timelines, discerning compromised data, pinpointing unusual activities, and aiding security teams in proactive threat mitigation.  

With its capabilities, organizations can swiftly understand the attack timeline, affected assets, unauthorized accesses, compromised data points, and malicious interactions, facilitating appropriate communication and action. For example, when Cyber AI Analyst shows an attack path, the security team gains insight on the segmentation or lack thereof between two subnets allowing the security team to appropriately segment the subnets.  

Cyber AI improves critical infrastructure operators’ ability to report major cyber-attacks to regulatory authorities. Considering that 72 hours is the reporting period for most significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.

Figure 3: The tabs labeled 1-4 denote model breaches, each with a specific action and severity indicated by color dots. Darktrace integrates these breaches, offering the security team a unified view of interconnected security events.  

The right AI for the right challenge

Incident Phase:

Protect

Role of AI:

Cyber risk prioritization

Attack path modelling

Compliance reporting

Darktrace Product:

PREVENT/OT

Incident Phase:

Detect

Role of AI:

Anomaly detection

Triaging and investigating

Darktrace Product:

Cyber AI analyst

DETECT/OT

Incident Phase:

Respond

Role of AI: 

Autonomous response  

Incident reporting

Darktrace Product:

RESPOND/OT

Incident Phase:

Recover

Role of AI:

Incident preparedness

Incident simulations

Darktrace Product:

HEAL

Credit to: Nicole Carignan, VP of Strategic Cyber AI - Kendra Gonzalez Duran, Director of Technology Innovation - & Daniel Simonds, Director of Operational Technology for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

/

May 14, 2025

Catching a RAT: How Darktrace Neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI