Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Jack Stockdale OBE FREng
Chief Technology Officer
Share
12
Jun 2023
Generative AI and Large Language Model (LLM) tools have entered the mainstream of public consciousness this year, with people using the likes of OpenAI’s ChatGPT and Google Bard for everything from helping web searches to using the AI capabilities to drive efficiency in the workplace.
At Darktrace, we have long understood the potential for AI to be one of the most transformative technological opportunities of our time. Our Darktrace Cyber AI Research Centre in Cambridge has been researching and developing AI tools for over a decade – tools like Darktrace DETECT™ and RESPOND™ which use a variety of AI technology to keep 8,400 customers around the world safe from cyber disruption.
As pioneers of AI and understanding its potential to change the world, we recognize that in 2023, the AI genie is out of the bottle. AI tools are rapidly becoming part of our day to day lives.
74% of active customer deployments have employees using generative AI tools in the workplace [1]
While generative AI tools have the power to increase productivity and augment human creativity, businesses need to move quickly to keep up with the pace of innovation. These tools carry potential privacy and security risks if used incorrectly or without proper policies in place that match the unique needs of the business – creating challenges for CISOs.
Privacy and Security Risks with Generative AI
Government agencies like the UK’s National Cyber Security Centre (NCSC) have already issued guidance about the need to manage risk when using generative AI tools and other LLMs in the workplace. In the United States, the Cybersecurity and Infrastructure Agency (CISA) has also expressed concerns about the security implications of generative AI.
One of the reasons for this is because LLMs can learn from your prompts, storing information entered and using it to train datasets. With that data in the system, it is possible that if someone enters the right prompt, the LLM could potentially use your company’s data in response to a query.
And if the information you entered contains sensitive files or data such as intellectual property or know-how, financial reports, confidential internal documents, or sales numbers, it could become part of the third-party AI model and potentially available to others, creating privacy, intellectual property, and security risks if the appropriate guardrails are not in place.
How Darktrace Helps Manage Generative AI Use
In response to the growing use of generative AI tools, Darktrace has announced new risk and compliance models to help Darktrace customers address concerns around the risk of IP loss and data leakage.
We’re excited about how immensely powerful these generative AI tools are, with the capability to help people and businesses work efficiently– but like any other technology, there’s the risk that they could be inadvertently misused if not managed or monitored correctly. That’s why the new risk and compliance models for Darktrace DETECT™ and RESPOND™ make it easier for customers to put guardrails in place to monitor, and when necessary, respond to activity and connections to generative AI and LLM tools such as AutoGPT, ChatGPT, Stable Diffusion, Claude, and more.
Each business will have its own distinct policies and needs related to generative AI tools, so we’ve also made it easier for customers to add their own list of tools to monitor for.
Darktrace’s Self-Learning AI makes it possible to detect generative AI activity that may deviate from company policies or best practices. We bring our AI to each customer’s data, and it learns the day-to-day workings of every user, asset, and device – building an understanding of your business’s unique ‘pattern of life’. That’s why it can detect even subtle anomalies that could indicate a threat to your business and autonomously respond, containing the threat in seconds.
In May 2023, Darktrace Self-Learning AI detected and prevented an upload of over 1GB of data to a generative AI tool at one of its customers. [2]
With these guardrails in place, Darktrace customers can take advantage of the opportunity using generative AI and LLMs provide, while remaining protected against the potential security, IP, and privacy risks.
Using AI Safely and Responsibly
At Darktrace, we believe that recent advances in generative AI and LLMs are an important addition to the growing arsenal of AI techniques that will transform cyber security. After all, we have been utilizing AI, including LLMs and generative AI, across all of our products for years – including in Cyber AI Analyst for real time analysis of incidents, helping Darktrace customers use the power of AI to stay protected from cyber threats.
But we also believe in the responsible development and deployment of different AI techniques, which is why we are providing the tools customers need to use AI safely and responsibly.
Our Self-Learning AI is already helping more than 8,400 businesses fight back and protect themselves against cyber threats and disruptions for the past ten years – with these new tools, CISOs can ensure that productivity is boosted by generative AI, without needing to worry about the potential security risks. Our AI learns the business in real time, all the time. It’s a Self-Learning AI. And the impact we’ve seen on improved security outcomes has been enormous.
Self-Learning AI informs Darktrace’s Cyber AI Loop, an interconnected, comprehensive set of dynamically related capabilities working together autonomously to create a continuous feedback loop to prevent, detect, respond, and heal from cyber-attacks. Ensuring that data, people, and businesses stay protected from cyber threats.
Figure 1: Darktrace Cyber AI Loop
References
[1] Based on data obtained on June 2nd, 2023, from active customer deployments with Call Home enabled, where Darktrace detected generative AI activity at some point.
[2] Based on data obtained on June 2nd, 2023, from active customer deployments with Call Home enabled, where Darktrace detected generative AI activity at some point.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Introducing Version 2 of Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2)
Learn how Darktrace’s DEMIST-2 embedding model delivers high-accuracy threat classification and detection across any environment, outperforming larger models with efficiency and precision.
AI Uncovered: Introducing Darktrace Incident Graph Evaluation for Security Threats (DIGEST)
Discover how Darktrace’s new DIGEST model enhances Cyber AI Analyst by using GNNs and RNNs to score and prioritize threats with expert-level precision before damage is done.
Force Multiply Your Security Team with Agentic AI: How the Industry’s Only True Cyber AI Analyst™ Saves Time and Stop Threats
See how Darktrace Cyber AI Analyst™, an agentic AI virtual analyst, cuts through alert noise, accelerates threat response, and strengthens your security team — all without adding headcount.
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products
Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure
Introduction: Exploiting SAP platforms
Global enterprises depend extensively on SAP platforms, such as SAP NetWeaver and Visual Composer, to run critical business processes worldwide. These systems; however, are increasingly appealing targets for well-resourced adversaries:
In March 2025, CISA issued an alert confirming active exploitation of a 2017 SAP NetWeaver vulnerability (CVE‑2017‑12637), enabling attackers to perform directory traversal and exfiltrate sensitive files, including credentials, from internet-facing systems
CVE-2025-31324 affects SAP’s NetWeaver Visual Composer, a web-based software modeling tool. SAP NetWeaver is an application server and development platform that runs and connects SAP and non-SAP applications across different technologies [2]. It is commonly used by process specialists to develop application components without coding in government agencies, large enterprises, and by critical infrastructure operators [4].
CVE-2025-31324 affects SAP’s Netweaver Visual Composer Framework 7.1x (all SPS) and above [4]. The vulnerability in a Java Servlet (/irj/servlet_jsp) would enable an unauthorized actor to upload arbitrary files to the /developmentserver/metadatauploader endpoint, potentially resulting in remote code execution (RCE) and full system compromise [3]. The issue stems from an improper authentication and authorization check in the SAP NetWeaver Application Server Java systems [4].
What is the severity rating of CVE-2025-31324?
The vulnerability, first disclosed on April 24, 2025, carries the highest severity rating (CVSS v3 score: 10.0) and could allow remote attackers to upload malicious files without requiring authentication [1][5]. Although SAP released a workaround on April 8, many organizations are hesitant to take their business-critical SAP NetWeaver systems offline, leaving them exposed to potential exploitation [2].
How is CVE-2025-31324 exploited?
The vulnerability is exploitable by sending specifically crafted GET, POST, or HEAD HTTP requests to the /developmentserver/metadatauploader URL using either HTTP or HTTPS. Attackers have been seen uploading malicious files (.jsp, .java, or .class files to paths containing “\irj\servlet_jsp\irj\”), most of them being web shells, to publicly accessible SAP NetWeaver systems.
External researchers observed reconnaissance activity targeting this vulnerability in late January 2025, followed by a surge in exploitation attempts in February. The first confirmed compromise was reported in March [4].
Multiple threat actors have reportedly targeted the vulnerability, including Chinese Advanced Persistent Threats (APTs) groups Chaya_004 [7], UNC5221, UNC5174, and CL-STA-0048 [8], as well as ransomware groups like RansomEXX, also known as Storm-2460, BianLian [4] or Qilin [6] (the latter two share the same indicators of compromise (IoCs)).
Following the initial workaround published on April 8, SAP released a security update addressing CVE-2025-31324 and subsequently issued a patch on May 13 (Security Note 3604119) to resolve the root cause of the vulnerability [4].
Darktrace’s coverage of CVE-2025-31324 exploitation
Darktrace has observed activity indicative of threat actors exploiting CVE-2025-31324, including one instance detected before the vulnerability was publicly disclosed.
In April 2025, the Darktrace Threat Research team investigated activity related to the CVE-2025-31324 on SAP devices and identified two cases suggesting active exploitation of the vulnerability. One case was detected prior to the public disclosure of the vulnerability, and the other just two days after it was published.
Early detection of CVE 2025-31324 by Darktrace
Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.
On April 18, six days prior to the public disclosure of CVE-2025-31324, Darktrace began to detect unusual activity on a device belonging to a logistics organization in the Europe, the Middle East and Africa (EMEA) region. Multiple IoCs observed during this incident have since been linked via OSINT to the exploitation of CVE-2025-31324. Notably, however, this reporting was not available at the time of detection, highlighting Darktrace’s ability to detect threats agnostically, without relying on threat intelligence.
The device was observed making domain name resolution request for the Out-of-Band Application Security Testing (OAST) domain cvvr9gl9namk9u955tsgaxy3upyezhnm6.oast[.]online. OAST is often used by security teams to test if exploitable vulnerabilities exist in a web application but can similarly be used by threat actors for the same purpose [9].
Four days later, on April 22, Darktrace observed the same device, an internet-facing system believed to be a SAP device, downloading multiple executable (.exe) files from several Amazon Simple Storage Service (S3). Darktrace’s Threat Research team later found these files to be associated with the KrustyLoader malware [23][24][25].
KrustyLoader is known to be associated with the Chinese threat actor UNC5221, also known as UTA0178, which has been reported to aggressively target devices exposed to the internet [10] [14] [15]. It is an initial-stage malware which downloads and launches a second-stage payload – Sliver C2. Sliver is a similar tool to Cobalt Strike (an open-source post-exploitation toolkit). It is used for command-and-control (C2) connections [11][12]13]. After its successful download, KrustyLoader deletes itself to evade detection. It has been reported that multiple Chinese APT groups have deployed KrustyLoader on SAP Netweaver systems post-compromise [8].
The actors behind KrustyLoader have also been associated with the exploitation of zero-day vulnerabilities in other enterprise systems, including Ivanti devices [12]. Notably, in this case, one of the Amazon S3 domains observed (abode-dashboard-media.s3.ap-south-1.amazonaws[.]com ) had previously been investigated by Darktrace’s Threat Research team as part of their investigation into Ivanti Connect Secure (CS) and Policy Secure (PS) appliances.
In addition to the download of known malicious files, Darktrace also detected new IoCs, including several executable files that could not be attributed to any known malware families or previous attacks, and for which no corresponding OSINT reporting was available.
Post-CVE publication detection
Exploit Validation
Between April 27 and 29, Darktrace observed unusual activity from an SAP device on the network of a manufacturing customer in EMEA.
Figure 2: Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.
The device was observed making DNS requests for OAST domains (e.g. aaaaaaaa.d06qqn7pu5a6u25tv9q08p5xhbjzw33ge.oast[.]online and aaaaaaaaaaa.d07j2htekalm3139uk2gowmxuhapkijtp.oast[.]pro), suggesting that a threat actor was testing for exploit validation [9].
Figure 3: Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.
Privilege escalation tool download attempt
One day later, Darktrace observed the same device attempting to download an executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe (SHA-1 file hash: e007edd4688c5f94a714fee036590a11684d6a3a).
Darktrace / NETWORK identified the user agents Microsoft-CryptoAPI/10.0 and CertUtil URL Agent during the connections to 23.95.123[.]5. The connections were made over port 666, which is not typically used for HTTP connections.
Multiple open-source intelligence (OSINT) vendors have identified the executable file as either JuicyPotato or SweetPotato, both Windows privilege escalation tools[16][17][18][19]. The file hash and the unusual external endpoint have been associated with the Chinese APT group Gelsemium in the past, however, many threat actors are known to leverage this tool in their attacks [20] [21].
Figure 4: Darktrace’s Cyber AI Analyst’s detection of a SAP device downloading a suspicious executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe on April 28, 2025.
Darktrace deemed this activity highly suspicious and triggered an Enhanced Monitoring model alert, a high-priority security model designed to detect activity likely indicative of compromise. As the customer was subscribed to the Managed Threat Detection service, Darktrace’s Security Operations Centre (SOC) promptly investigated the alert and notified the customer for swift remediation. Additionally, Darktrace’s Autonomous Response capability automatically blocked connections to the suspicious IP, 23.95.123[.]5, effectively containing the compromise in its early stages.
Figure 5: Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.
Conclusion
The exploitation of CVE-2025-31324 to compromise SAP NetWeaver systems highlights the persistent threat posed by vulnerabilities in public-facing assets. In this case, threat actors leveraged the flaw to gain an initial foothold, followed by attempts to deploy malware linked to groups affiliated with China [8][20].
Crucially, Darktrace demonstrated its ability to detect and respond to emerging threats even before they are publicly disclosed. Six days prior to the public disclosure of CVE-2025-31324, Darktrace detected unusual activity on a device believed to be a SAP system, which ultimately represented an early detection of the CVE. This detection was made possible through Darktrace’s behavioral analysis and anomaly detection, allowing it to recognize unexpected deviations in device behavior without relying on signatures, rules or known IoCs. Combined with its Autonomous Response capability, this allowed for immediate containment of suspicious activity, giving security teams valuable time to investigate and mitigate the threat.
Credit to Signe Zaharka (Principal Cyber Analyst), Emily Megan Lim, (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
List of IoCs
23.95.123[.]5:666/xmrigCCall/s.exe - URL- JuicyPotato/SweetPotato - high confidence
29274ca90e6dcf5ae4762739fcbadf01- MD5 file hash - JuicyPotato/SweetPotato - high confidence
Breaking Silos: Why Unified Security is Critical in Hybrid World
Hybrid environments demand end-to-end visibility to stop modern attacks
Hybrid environments are a dominant trend in enterprise technology, but they continue to present unique issues to the defenders tasked with securing them. By 2026, Gartner predicts that 75% of organizations will adopt hybrid cloud strategies [1]. At the same time, only 23% of organizations report full visibility across cloud environments [2].
That means a strong majority of organizations do not have comprehensive visibility across both their on-premises and cloud networks. As a result, organizations are facing major challenges in achieving visibility and security in hybrid environments. These silos and fragmented security postures become a major problem when considering how attacks can move between different domains, exploiting the gaps.
For example, an attack may start with a phishing email, leading to the compromise of a cloud-based application identity and then moving between the cloud and network to exfiltrate data. Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.
Given this, unified visibility is essential for security teams to reduce blind spots and detect threats across the entire attack surface.
Risks of fragmented visibility
Silos arise due to separate teams and tools managing on-premises and cloud environments. Many teams have a hand in cloud security, with some common ones including security, infrastructure, DevOps, compliance, and end users, and these teams can all use different tools. This fragmentation increases the likelihood of inconsistent policies, duplicate alerts, and missed threats. And that’s just within the cloud, not even considering the additional defenses involved with network security.
Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks. The lack of visibility between on-premises and cloud environments contributes to missed threats and delayed incident response. In fact, breaches involving stolen or compromised credentials take an average of 292 to identify and contain [3]. That’s almost ten months.
The risk of fragmented visibility runs especially high as companies undergo cloud migrations. As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations.
Unified visibility is the solution
Unified visibility is achieved by having a single-pane-of-glass view to monitor both on-premises and cloud environments. This type of view brings many benefits, including streamlined detection, faster response times, and reduced complexity.
This can only be accomplished through integrations or interactions between the teams and tools involved with both on-premises security and cloud security.
AI-driven platforms, like Darktrace, are especially well equipped to enable the real-time monitoring and insights needed to sustain unified visibility. This is because they can handle the large amounts of data and data types.
Darktrace accomplishes this by plugging into an organization’s infrastructure so the AI can ingest and analyze data and its interactions within the environment to form an understanding of the organization’s normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence.
This dynamic understanding of normal means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. This helps reduce noise while surfacing real threats, across cloud and on-prem environments without manual tuning.
In this way, given its versatile AI-based, platform approach, Darktrace empowers security teams with real-time monitoring and insights across both the network and cloud.
Unified visibility in the modern threat landscape
As part of the Darktrace ActiveAI Security Platform™,Darktrace / CLOUD works continuously across public, private, hybrid, and multi-cloud deployments. With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures.
It is always on the lookout for changes, driven by user and service activity. For example, unusual user activity can significantly raise the asset’s score, prompting Darktrace’s AI to update its architectural view and keep a living record of the cloud’s ever-changing landscape, providing near real-time insights into what’s happening.
This continuous architectural awareness ensures that security teams have a real-time understanding of cloud behavior and not just a static snapshot.
Figure 1. Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.
With this dynamic cloud visibility and monitoring, Darktrace / CLOUD can help unify and secure environments.
Real world example: Remote access supply chain attacks
Sectop Remote Access Trojan (RAT) malware, also known as ‘ArchClient2,’ is a .NET RAT that contains information stealing capabilities and allows threat actors to monitor and control targeted computers. It is commonly distributed through drive-by downloads of illegitimate software via malvertizing.
Darktrace has been able to detect and respond to Sectop RAT attacks using unified visibility and platform-wide coverage. In one such example, Darktrace observed one device making various suspicious connections to unusual endpoints, likely in an attempt to receive C2 information, perform beaconing activity, and exfiltrate data to the cloud.
This type of supply chain attack can jump from the network to the cloud, so a unified view of both environments helps shorten detection and response times, therefore mitigating potential impact. Darktrace’s ability to detect these cross-domain behaviors stems from its AI-driven, platform-native visibility.
Conclusion
Organizations need unified visibility to secure complex, hybrid environments effectively against threats and attacks. To achieve this type of comprehensive visibility, the gaps between legacy security tools across on-premises and cloud networks can be bridged with platform tools that use AI to boost data analysis for highly accurate behavioral prediction and anomaly detection.