Blog
/
/
June 12, 2023

How Darktrace AI Protects 8,400 Customers

This blog describes how Darktrace DETECT and RESPOND can help organizations reduce privacy and security risks related to generative AI.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Jack Stockdale OBE FREng
Chief Technology Officer
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Jun 2023

Generative AI and Large Language Model (LLM) tools have entered the mainstream of public consciousness this year, with people using the likes of OpenAI’s ChatGPT and Google Bard for everything from helping web searches to using the AI capabilities to drive efficiency in the workplace.

At Darktrace, we have long understood the potential for AI to be one of the most transformative technological opportunities of our time. Our Darktrace Cyber AI Research Centre in Cambridge has been researching and developing AI tools for over a decade – tools like Darktrace DETECT™ and RESPOND™ which use a variety of AI technology to keep 8,400 customers around the world safe from cyber disruption. 

As pioneers of AI and understanding its potential to change the world, we recognize that in 2023, the AI genie is out of the bottle. AI tools are rapidly becoming part of our day to day lives. 

74% of active customer deployments have employees using generative AI tools in the workplace [1]

While generative AI tools have the power to increase productivity and augment human creativity, businesses need to move quickly to keep up with the pace of innovation. These tools carry potential privacy and security risks if used incorrectly or without proper policies in place that match the unique needs of the business – creating challenges for CISOs.

Privacy and Security Risks with Generative AI 

Government agencies like the UK’s National Cyber Security Centre (NCSC) have already issued guidance about the need to manage risk when using generative AI tools and other LLMs in the workplace. In the United States, the Cybersecurity and Infrastructure Agency (CISA) has also expressed concerns about the security implications of generative AI.

One of the reasons for this is because LLMs can learn from your prompts, storing information entered and using it to train datasets. With that data in the system, it is possible that if someone enters the right prompt, the LLM could potentially use your company’s data in response to a query.

And if the information you entered contains sensitive files or data such as intellectual property or know-how, financial reports, confidential internal documents, or sales numbers, it could become part of the third-party AI model and potentially available to others, creating privacy, intellectual property, and security risks if the appropriate guardrails are not in place. 

How Darktrace Helps Manage Generative AI Use 

In response to the growing use of generative AI tools, Darktrace has announced new risk and compliance models to help Darktrace customers address concerns around the risk of IP loss and data leakage.

We’re excited about how immensely powerful these generative AI tools are, with the capability to help people and businesses work efficiently– but like any other technology, there’s the risk that they could be inadvertently misused if not managed or monitored correctly. That’s why the new risk and compliance models for Darktrace DETECT™ and RESPOND™ make it easier for customers to put guardrails in place to monitor, and when necessary, respond to activity and connections to generative AI and LLM tools such as AutoGPT, ChatGPT, Stable Diffusion, Claude, and more. 

Each business will have its own distinct policies and needs related to generative AI tools, so we’ve also made it easier for customers to add their own list of tools to monitor for. 

Darktrace’s Self-Learning AI makes it possible to detect generative AI activity that may deviate from company policies or best practices. We bring our AI to each customer’s data, and it learns the day-to-day workings of every user, asset, and device – building an understanding of your business’s unique ‘pattern of life’.  That’s why it can detect even subtle anomalies that could indicate a threat to your business and autonomously respond, containing the threat in seconds.  

In May 2023, Darktrace Self-Learning AI detected and prevented an upload of over 1GB of data to a generative AI tool at one of its customers. [2]

With these guardrails in place, Darktrace customers can take advantage of the opportunity using generative AI and LLMs provide, while remaining protected against the potential security, IP, and privacy risks.

Using AI Safely and Responsibly

At Darktrace, we believe that recent advances in generative AI and LLMs are an important addition to the growing arsenal of AI techniques that will transform cyber security. After all, we have been utilizing AI, including LLMs and generative AI, across all of our products for years – including in Cyber AI Analyst for real time analysis of incidents, helping Darktrace customers use the power of AI to stay protected from cyber threats.

But we also believe in the responsible development and deployment of different AI techniques, which is why we are providing the tools customers need to use AI safely and responsibly. 

Our Self-Learning AI is already helping more than 8,400 businesses fight back and protect themselves against cyber threats and disruptions for the past ten years – with these new tools, CISOs can ensure that productivity is boosted by generative AI, without needing to worry about the potential security risks. Our AI learns the business in real time, all the time. It’s a Self-Learning AI. And the impact we’ve seen on improved security outcomes has been enormous.

Self-Learning AI informs Darktrace’s Cyber AI Loop, an interconnected, comprehensive set of dynamically related capabilities working together autonomously to create a continuous feedback loop to prevent, detect, respond, and heal from cyber-attacks. Ensuring that data, people, and businesses stay protected from cyber threats.

Figure 1: Darktrace Cyber AI Loop

References

[1] Based on data obtained on June 2nd, 2023, from active customer deployments with Call Home enabled, where Darktrace detected generative AI activity at some point.

[2]  Based on data obtained on June 2nd, 2023, from active customer deployments with Call Home enabled, where Darktrace detected generative AI activity at some point.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Jack Stockdale OBE FREng
Chief Technology Officer

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI