Blog
/
Network
/
May 25, 2022

Understanding Grief Ransomware Attacks

Discover the latest insights on Grief ransomware and how to protect your organization. Stay informed on evolving cybersecurity threats with the cyber experts.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2022

The Grief ransomware strain, also referred to as PayOrGrief, quickly gained a reputation for disruption in mid-to-late 2021. The gang behind the malware used quadruple-extortion ransomware tactics and targeted a range of victims including municipalities and school districts.

In July 2021, just weeks after the strain was first reported to cyber security teams, Grief successfully targeted Thessaloniki, the second largest city in Greece. Faced with a $20 million ransom demand, the municipality’s security team was forced to shut down all of its websites and public-facing services and launch a full investigation into the breach.

Double act: Grief and DoppelPaymer

From its emergence in May 2021, Grief used novel malware which confounded security tools trained on historical attacks. By July, however, the sophistication and efficiency of the group’s attacks led many to suspect that Grief’s operators had experience beyond their supposed two months of operation.

Grief is now widely reported to be a rebrand of the DoppelPaymer ransomware gang, which ended its operations in May 2021 and was believed to be affiliated with the Russian ransomware gang Evil Corp. After adopting the new moniker, however, Grief regularly blew past traditional security tools, amassing well over $10 million in ransom payments in just four months.

Adaptations and rebrands are common techniques adopted by criminal gangs using the Ransomware-as-a-Service business model. The success of Grief’s rebrand illustrates how rapidly a ransomware group can update its attacks and render them unrecognizable to signature-based tools.

Revealing Grief’s tricks with Cyber AI Analyst

In July 2021, PayOrGrief targeted a European manufacturing company which had Darktrace deployed across its network. Darktrace’s early detection of the attack, along with the real-time visibility into its lifecycle offered by Darktrace’s Cyber AI Analyst, meant that each stage of the attack was clear to see.

Figure 1: Timeline of the PayOrGrief attack

The initial intrusion compromised four devices, which Darktrace detected when these devices connected to rare external IPs and downloaded encoded text files. It is likely that the devices were compromised as the result of a targeted phishing campaign, which are often used in Grief attacks as a way of injecting malware such as Dridex onto devices. If deployed within the targeted organization, Antigena Email would have identified the phishing campaign and halted it, before it reached employee inboxes. In this case, however, the attack continued.

Following the initial compromise, C2 (Command and Control) connections were made over an encrypted channel using invalid SSL certificates. An upload of 50MB of data was made from one of the infected devices to the company’s corporate server, which gave the attackers access to the company’s crown jewels: its most sensitive data. From this privileged position, and with keep-alive beacons in place, the attack was ready for detonation.

Several devices were detected attempting to upload data totaling more than 100 GB to the external file storage platform, Mega, using encrypted HTTPS on port 443. However, the attackers did not receive the total package of data they had expected. The organization had deployed Darktrace’s Autonomous Response to protect its key assets and most sensitive data. The AI recognized the anomalous behavior as a significant deviation from the business’s normal ‘pattern of life’ and autonomously blocked uploads from protected devices, preventing exfiltration wherever it was able to do so.

Figure 2: Data exfiltration from a single device, investigated by Cyber AI Analyst

The attackers then continued to spread through the digital environment. Using ‘Living off the Land’ techniques including RDP and SMB, they performed internal reconnaissance, escalated their privileges and moved laterally to additional digital assets. With access to new admin credentials, just ten hours after the initial C2 communications, the attackers commenced ransomware encryption.

It’s highly possible, therefore, that Grief has targeted Darktrace customers previously and been neutralized too early for the attack to be identified and attributed. In this instance, the organization had deployed Autonomous Response only on certain areas of the network, and we are therefore able to see how the attack progressed on unprotected devices.

Unusual suspects

The Indicators of Compromise (IoCs) for Grief ransomware have now been incorporated by many traditional security tools, but this is a short-term solution, and won’t account for further changes in both threat actor tactics and the digital environments they target. Once the Grief moniker has been exhausted, it is more than likely that another will be adopted in its place.

The AI-driven approach to cyber security tackles threats regardless of when and where they arrive, or what name they arrive under. By focusing on developing its sophisticated understanding of the entire digital estate, Darktrace’s Autonomous Response targets specific anomalies with specific, proportionate responses, even when they are part of entirely novel attacks. And when given the freedom to take action against these threats the moment they’re detected, Autonomous Response can ensure that organizations stay protected even when human teams are unavailable.

Thanks to Darktrace analyst Beverly McCann for her insights on the above threat find.

Technical details

Darktrace model detections

  • Device / Suspicious SMB Scanning Activity
  • Device / New User Agents
  • Anomalous Server Activity / Rare External from Server
  • Compliance / External Windows Communications
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Compliance / Remote Management Tool on Server
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Lots of New Connections
  • Unusual Activity / Unusual File Storage Data Transfer
  • Unusual Activity / Enhanced Unusual External Data Transfer [Enhanced Monitoring]
  • Anomalous Connection / Uncommon 1GiB Outbound
  • Unusual Activity / Unusual External Data to New Ips
  • Anomalous Connection / SMB Enumeration
  • Multiple Device Correlations / Behavioral Change Across Multiple Devices
  • Device / New or Uncommon WMI Activity
  • Unusual Activity / Unusual External Connections
  • Device / ICMP Address Scan
  • Anomalous Connection / Unusual Admin RDP Session
  • Compliance / SMB Version 1 Usage
  • Anomalous Connection / Unusual SMB Version 1
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Unusual Activity / Anomalous SMB Move and Write
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Unusual Remote Command Execution
  • User / New Admin Credentials On Client
  • Device / New or Uncommon SMB Named Pipe
  • Device / Multiple Lateral Movement Model Breaches [Enhanced Monitoring]
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / SMA Lateral Movement
  • Anomalous File / Internal / Unusual Internal EXE File Transfer
  • Anomalous Server Activity / Unusual Unresponsive Server
  • Device / Internet Facing Device with High Priority Alert
  • Multiple Device Correlations / Spreading Unusual SMB Activity
  • Multiple Device Correlations / Multiple Devices Breaching the Same Model

Darktrace Autonomous Response alerts

  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Antigena / Network / Insider Threat / Antigena Breaches Over Time Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches over Time Block
  • Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / Insider Threat / Antigena SMB Enumeration Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat / Antigena Ransomware Block
  • Antigena / Network / External Threat / SMB Ratio Antigena Block

MITRE ATT&CK techniques observed

Reconnaissance
T1595 — Active Scanning

Resource Development
T1608 — Stage Capabilities

Initial Access
T1190 — Exploit Public-Facing Application

Persistence
T1133 — External Remote Services

Defense Evasion
T1079 — Valid Accounts

Discovery
T1046 — Network Service Scanning
T1083 — File and Directory Discovery
T1018 — Remote System Discovery

Lateral Movement
T1210 — Exploitation of Remote Services
T1080 — Taint Shared Content
T1570 — Lateral Tool Transfer
T1021 — Remote Services

Command and Control
T1071 — Application Layer Protocol
T1095 — Non-Application Layer Protocol
T1571 — Non-Standard Port

Exfiltration
T1041 — Exfiltration over C2 Channel
T1567 — Exfiltration Over Web Service
T1029 — Scheduled Transfer


Impact
T1486 — Data Encrypted for Impact
T1489 — Service Stop
T1529 — System Shutdown/Reboot

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI