ブログ
/
Network
/
May 25, 2022

Understanding Grief Ransomware Attacks

Discover the latest insights on Grief ransomware and how to protect your organization. Stay informed on evolving cybersecurity threats with the cyber experts.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2022

The Grief ransomware strain, also referred to as PayOrGrief, quickly gained a reputation for disruption in mid-to-late 2021. The gang behind the malware used quadruple-extortion ransomware tactics and targeted a range of victims including municipalities and school districts.

In July 2021, just weeks after the strain was first reported to cyber security teams, Grief successfully targeted Thessaloniki, the second largest city in Greece. Faced with a $20 million ransom demand, the municipality’s security team was forced to shut down all of its websites and public-facing services and launch a full investigation into the breach.

Double act: Grief and DoppelPaymer

From its emergence in May 2021, Grief used novel malware which confounded security tools trained on historical attacks. By July, however, the sophistication and efficiency of the group’s attacks led many to suspect that Grief’s operators had experience beyond their supposed two months of operation.

Grief is now widely reported to be a rebrand of the DoppelPaymer ransomware gang, which ended its operations in May 2021 and was believed to be affiliated with the Russian ransomware gang Evil Corp. After adopting the new moniker, however, Grief regularly blew past traditional security tools, amassing well over $10 million in ransom payments in just four months.

Adaptations and rebrands are common techniques adopted by criminal gangs using the Ransomware-as-a-Service business model. The success of Grief’s rebrand illustrates how rapidly a ransomware group can update its attacks and render them unrecognizable to signature-based tools.

Revealing Grief’s tricks with Cyber AI Analyst

In July 2021, PayOrGrief targeted a European manufacturing company which had Darktrace deployed across its network. Darktrace’s early detection of the attack, along with the real-time visibility into its lifecycle offered by Darktrace’s Cyber AI Analyst, meant that each stage of the attack was clear to see.

Figure 1: Timeline of the PayOrGrief attack

The initial intrusion compromised four devices, which Darktrace detected when these devices connected to rare external IPs and downloaded encoded text files. It is likely that the devices were compromised as the result of a targeted phishing campaign, which are often used in Grief attacks as a way of injecting malware such as Dridex onto devices. If deployed within the targeted organization, Antigena Email would have identified the phishing campaign and halted it, before it reached employee inboxes. In this case, however, the attack continued.

Following the initial compromise, C2 (Command and Control) connections were made over an encrypted channel using invalid SSL certificates. An upload of 50MB of data was made from one of the infected devices to the company’s corporate server, which gave the attackers access to the company’s crown jewels: its most sensitive data. From this privileged position, and with keep-alive beacons in place, the attack was ready for detonation.

Several devices were detected attempting to upload data totaling more than 100 GB to the external file storage platform, Mega, using encrypted HTTPS on port 443. However, the attackers did not receive the total package of data they had expected. The organization had deployed Darktrace’s Autonomous Response to protect its key assets and most sensitive data. The AI recognized the anomalous behavior as a significant deviation from the business’s normal ‘pattern of life’ and autonomously blocked uploads from protected devices, preventing exfiltration wherever it was able to do so.

Figure 2: Data exfiltration from a single device, investigated by Cyber AI Analyst

The attackers then continued to spread through the digital environment. Using ‘Living off the Land’ techniques including RDP and SMB, they performed internal reconnaissance, escalated their privileges and moved laterally to additional digital assets. With access to new admin credentials, just ten hours after the initial C2 communications, the attackers commenced ransomware encryption.

It’s highly possible, therefore, that Grief has targeted Darktrace customers previously and been neutralized too early for the attack to be identified and attributed. In this instance, the organization had deployed Autonomous Response only on certain areas of the network, and we are therefore able to see how the attack progressed on unprotected devices.

Unusual suspects

The Indicators of Compromise (IoCs) for Grief ransomware have now been incorporated by many traditional security tools, but this is a short-term solution, and won’t account for further changes in both threat actor tactics and the digital environments they target. Once the Grief moniker has been exhausted, it is more than likely that another will be adopted in its place.

The AI-driven approach to cyber security tackles threats regardless of when and where they arrive, or what name they arrive under. By focusing on developing its sophisticated understanding of the entire digital estate, Darktrace’s Autonomous Response targets specific anomalies with specific, proportionate responses, even when they are part of entirely novel attacks. And when given the freedom to take action against these threats the moment they’re detected, Autonomous Response can ensure that organizations stay protected even when human teams are unavailable.

Thanks to Darktrace analyst Beverly McCann for her insights on the above threat find.

Technical details

Darktrace model detections

  • Device / Suspicious SMB Scanning Activity
  • Device / New User Agents
  • Anomalous Server Activity / Rare External from Server
  • Compliance / External Windows Communications
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Compliance / Remote Management Tool on Server
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Lots of New Connections
  • Unusual Activity / Unusual File Storage Data Transfer
  • Unusual Activity / Enhanced Unusual External Data Transfer [Enhanced Monitoring]
  • Anomalous Connection / Uncommon 1GiB Outbound
  • Unusual Activity / Unusual External Data to New Ips
  • Anomalous Connection / SMB Enumeration
  • Multiple Device Correlations / Behavioral Change Across Multiple Devices
  • Device / New or Uncommon WMI Activity
  • Unusual Activity / Unusual External Connections
  • Device / ICMP Address Scan
  • Anomalous Connection / Unusual Admin RDP Session
  • Compliance / SMB Version 1 Usage
  • Anomalous Connection / Unusual SMB Version 1
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Unusual Activity / Anomalous SMB Move and Write
  • Compromise / Ransomware / Suspicious SMB Activity [Enhanced Monitoring]
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Unusual Remote Command Execution
  • User / New Admin Credentials On Client
  • Device / New or Uncommon SMB Named Pipe
  • Device / Multiple Lateral Movement Model Breaches [Enhanced Monitoring]
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / SMA Lateral Movement
  • Anomalous File / Internal / Unusual Internal EXE File Transfer
  • Anomalous Server Activity / Unusual Unresponsive Server
  • Device / Internet Facing Device with High Priority Alert
  • Multiple Device Correlations / Spreading Unusual SMB Activity
  • Multiple Device Correlations / Multiple Devices Breaching the Same Model

Darktrace Autonomous Response alerts

  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Antigena / Network / Insider Threat / Antigena Breaches Over Time Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches over Time Block
  • Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Antigena / Network / Insider Threat / Antigena SMB Enumeration Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat / Antigena Ransomware Block
  • Antigena / Network / External Threat / SMB Ratio Antigena Block

MITRE ATT&CK techniques observed

Reconnaissance
T1595 — Active Scanning

Resource Development
T1608 — Stage Capabilities

Initial Access
T1190 — Exploit Public-Facing Application

Persistence
T1133 — External Remote Services

Defense Evasion
T1079 — Valid Accounts

Discovery
T1046 — Network Service Scanning
T1083 — File and Directory Discovery
T1018 — Remote System Discovery

Lateral Movement
T1210 — Exploitation of Remote Services
T1080 — Taint Shared Content
T1570 — Lateral Tool Transfer
T1021 — Remote Services

Command and Control
T1071 — Application Layer Protocol
T1095 — Non-Application Layer Protocol
T1571 — Non-Standard Port

Exfiltration
T1041 — Exfiltration over C2 Channel
T1567 — Exfiltration Over Web Service
T1029 — Scheduled Transfer


Impact
T1486 — Data Encrypted for Impact
T1489 — Service Stop
T1529 — System Shutdown/Reboot

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

/

January 14, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ