Blog
/
/
December 21, 2020

How AI Stopped a WastedLocker Ransomware Intrusion & Fast

Stop WastedLocker ransomware in its tracks with Darktrace AI technology. Learn about how AI detected a recent attack using 'Living off the Land' techniques.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Dec 2020

Since first being discovered in May 2020, WastedLocker has made quite a name for itself, quickly becoming an issue for businesses and cyber security firms around the world. WastedLocker is known for its sophisticated methods of obfuscation and steep ransom demands.

Its use of ‘Living off the Land’ techniques makes a WastedLocker attack extremely difficult for legacy security tools to detect. An ever-decreasing dwell time – the time between initial intrusion and final execution – means human responders alone struggle to contain the ransomware variant before damage is done.

This blog examines the anatomy of a WastedLocker intrusion that targeted a US agricultural organization in December. Darktrace’s AI detected and investigated the incident in real time, and we can see how Darktrace RESPOND would have autonomously taken action to stop the attack before encryption had begun.

As ransomware dwell time shrinks to hours rather than days, security teams are increasingly relying on artificial intelligence to stop threats from escalating at the earliest signs of compromise – containing attacks even when they strike at night or on the weekend.

How the WastedLocker attack unfolded

Figure 1: A timeline of the attack

Initial intrusion

The initial infection appears to have taken place when an employee was deceived into downloading a fake browser update. Darktrace AI was monitoring the behavior of around 5,000 devices at the organization, continuously adapting its understanding of the evolving ‘pattern of life’. It detected the first signs of a threat when a virtual desktop device started making HTTP and HTTPS connections to external destinations that were deemed unusual for the organization. The graph below depicts how the patient zero device exhibited a spike in internal connections around December 4.

Figure 2: The patient zero device exhibiting a spike in internal connections, with orange dots indicating model breaches of varying severity

Reconnaissance

Attempted reconnaissance began just 11 minutes after the initial intrusion. Again, Darktrace immediately picked up on the activity, detecting unusual ICMP ping scans and targeted address scans on ports 135, 139 and 445; presumably as the attacker looked for potential further Windows targets. The below demonstrates the scanning detections based on the unusual number of new failed connections.

Figure 3: Darktrace detecting an unusual number of failed connections

Lateral movement

The attacker used an existing administrative credential to authenticate against a Domain Controller, initiating new service control over SMB. Darktrace picked this up immediately, identifying it as unusual behavior.

Figure 4: Darktrace identifying the DCE-RPC requests
Figure 5: Darktrace surfacing the SMB writes

Several hours later – and in the early hours of the morning – the attacker used a temporary admin account ‘tempadmin’ to move to another Domain Controller over SMB. Darktrace instantly detected this as it was highly unusual to use a temporary admin account to connect from a virtual desktop to a Domain Controller.

Figure 6: Further anomalous connections detected the following day

Lock and load: WastedLocker prepares to strike

During the beaconing activity, the attacker also conducted internal reconnaissance and managed to establish successful administrative and remote connections to other internal devices by using tools already present. Soon after, a transfer of suspicious .csproj files was detected by Darktrace, and at least four other devices began exhibiting similar command and control (C2) communications.

However, with Darktrace’s real-time detections – and Cyber AI Analyst investigating and reporting on the incident in a number of minutes, the security team were able to contain the attack, taking the infected devices offline.

Automated investigations with Cyber AI Analyst

Darktrace’s Cyber AI Analyst launched an automatic investigation around every anomaly detection, forming hypotheses, asking questions about its own findings, and forming accurate answers at machine speed. It then generated high-level, intuitive incident summaries for the security team. Over the 48 hour period, the AI Analyst surfaced just six security incidents in total, with three of these directly relating to the WastedLocker intrusion.

Figure 7: The Cyber AI Analyst threat tray

The snapshot below shows a VMWare device (patient zero) making repeated external connections to rare destinations, scanning the network and using new admin credentials.

Figure 8: Cyber AI Analyst investigates

Darktrace RESPOND: AI that responds when the security team cannot

Darktrace RESPOND – the world’s first and only Autonomous Response technology – was configured in passive mode, meaning it did not actively interfere with the attack, but if we dive back into the Threat Visualizer we can see that Antigena in fully autonomous mode would have responded to the attack at this early stage, buying the security team valuable time.

In this case, after the initial unusual SSL C2 detection (based on a combination of destination rarity, JA3 unusualness and frequency analysis), RESPOND (formerly known as 'Antigena', as shown in the screenshots below) suggested instantly blocking the C2 traffic on port 443 and parallel internal scanning on port 135.

Figure 9: The Threat Visualizer reveals the action Antigena would have taken

When beaconing was later observed to bywce.payment.refinedwebs[.]com, this time over HTTP to /updateSoftwareVersion, RESPOND escalated its response by blocking the further C2 channels.

Figure 10: Antigena escalates its response

The vast majority of response tools rely on hard-coded, pre-defined rules, formulated as ‘If X, do Y’. This can lead to false positives that unnecessarily take devices offline and hamper productivity. Darktrace RESPOND's actions are proportionate, bespoke to the organization, and not created in advance. Darktrace Antigena autonomously chose what to block and the severity of the blocks based on the context of the intrusion, without a human pre-eminently hard-coding any commands or set responses.

Every response over the 48 hours was related to the incident – RESPOND did not try to take action on anything else during the intrusion period. It simply would have actioned a surgical response to contain the threat, while allowing the rest of the business to carry on as usual. There were a total of 59 actions throughout the incident time period – excluding the ‘Watched Domain Block’ actions shown below – which are used during incident response to proactively shut down C2 communication.

Figure 11: All Antigena action attempts during the intrusion period across the whole organization

RESPOND would have delivered those blocks via whatever integration is most suitable for the organization – whether that be Firewall integrations, NACL integrations or other native integrations. The technology would have blocked the malicious activity on the relevant ports and protocols for several hours – surgically interrupting the threat actors’ intrusion activity, thus preventing further escalation and giving the security team air cover.

Stopping WastedLocker ransomware before encryption ensues

This attack used many notable Tools, Techniques and Procedures (TTPs) to bypass signature-based tools. It took advantage of ‘Living off the Land’ techniques, including Windows Management Instrumentation (WMI), Powershell, and default admin credential use. Only one of the involved C2 domains had a single hit on Open Source Intelligence Lists (OSINT); the others were unknown at the time. The C2 was also encrypted with legitimate Thawte SSL Certificates.

For these reasons, it is plausible that without Darktrace in place, the ransomware would have been successful in encrypting files, preventing business operations at a critical time and possibly inflicting huge financial and reputational losses to the organization in question.

Darktrace’s AI detects and stops ransomware in its tracks without relying on threat intelligence. Ransomware has thrived this year, with attackers constantly coming up with new attack TTPs. However, the above threat find demonstrates that even targeted, sophisticated strains of ransomware can be stopped with AI technology.

Thanks to Darktrace analyst Signe Zaharka for her insights on the above threat find.

Learn more about Autonomous Response

Darktrace model detections:

  • Compliance / High Priority Compliance Model Breach
  • Compliance / Weak Active Directory Ticket Encryption
  • Anomalous Connection / Cisco Umbrella Block Page
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compliance / Default Credential Usage
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Anomalous Server Activity / Rare External from Server
  • Device / Lateral Movement and C2 Activity
  • Compromise / SSL Beaconing to Rare Destination
  • Device / New or Uncommon WMI Activity
  • Compromise / Watched Domain
  • Antigena / Network / External Threat / Antigena Watched Domain Block
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Slow Beaconing Activity To External Rare
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Large Number of Model Breaches
  • Compromise / Beaconing Activity To External Rare
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Anomalous Connection / New or Uncommon Service Control
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Compromise / SSL or HTTP Beacon
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Compromise / Sustained SSL or HTTP Increase
  • Unusual Activity / Unusual Internal Connections
  • Device / ICMP Address Scan

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI