Blog
/
Email
/
June 25, 2024

Following up on our Conversation: Detecting & Containing a LinkedIn Phishing Attack with Darktrace

Darktrace/Email detected a phishing attack that had originated from LinkedIn, where the attacker impersonated a well known construction company to conduct a credential harvesting attack on the target. Darktrace’s ActiveAI Security Platform played a critical role in investigating the activity and initiating real-time responses that were outside the physical capability of human security teams.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

Note: Real organization, domain and user names have been modified and replaced with fictitious names to maintain anonymity.  

Social media cyber-attacks

Social media is a known breeding ground for cyber criminals to easily connect with a near limitless number of people and leverage the wealth of personal information shared on these platforms to defraud the general public.  Analysis suggests even the most tech savvy ‘digital natives’ are vulnerable to impersonation scams over social media, as criminals weaponize brands and trends, using the promise of greater returns to induce sensitive information sharing or fraudulent payments [1].

LinkedIn phishing

As the usage of a particular social media platform increases, cyber criminals will find ways to exploit the increasing user base, and this trend has been observed with the rise in LinkedIn scams in recent years [2].  LinkedIn is the dominant professional networking site, with a forecasted 84.1million users by 2027 [3].  This platform is data-driven, so users are encouraged to share information publicly, including personal life updates, to boost visibility and increase job prospects [4] [5].  While this helps legitimate recruiters to gain a good understanding of the user, an attacker could also leverage the same personal content to increase the sophistication and success of their social engineering attempts.  

Darktrace detection of LinkedIn phishing

Darktrace detected a Software-as-a-Service (SaaS) compromise affecting a construction company, where the attack vector originated from LinkedIn (outside the monitoring of corporate security tools), but then pivoted to corporate email where a credential harvesting payload was delivered, providing the attacker with credentials to access a corporate file storage platform.  

Because LinkedIn accounts are typically linked to an individual’s personal email and are most commonly accessed via the mobile application [6] on personal devices that are not monitored by security teams, it can represent an effective initial access point for attackers looking to establish an initial relationship with their target. Moreover, user behaviors to ignore unsolicited emails from new or unknown contacts are less frequently carried over to platforms like LinkedIn, where interactions with ‘weak ties’ as opposed to ‘strong ties’ are a better predictor of job mobility [7]. Had this attack been allowed to continue, the threat actor could have leveraged access to further information from the compromised business cloud account to compromise other high value accounts, exfiltrate sensitive data, or defraud the organization.

LinkedIn phishing attack details

Reconnaissance

The initial reconnaissance and social engineering occurred on LinkedIn and was thus outside the purview of corporate security tools, Darktrace included.

However, the email domain “hausconstruction[.]com” used by the attacker in subsequent communications appears to be a spoofed domain impersonating a legitimate construction company “haus[.]com”, suggesting the attacker may have also impersonated an employee of this construction company on LinkedIn.  In addition to spoofing the domain, the attacker seemingly went further to register “hausconstruction.com” on a commercial web hosting platform.  This is a technique used frequently not just to increase apparent legitimacy, but also to bypass traditional security tools since newly registered domains will have no prior threat intelligence, making them more likely to evade signature and rules-based detections [8].  In this instance, open-source intelligence (OSINT) sources report that the domain was created several months earlier, suggesting this may have been part of a targeted attack on construction companies.  

Initial Intrusion

It was likely that during the correspondence over LinkedIn, the target user was solicited into following up over email regarding a prospective construction project, using their corporate email account.  In a probable attempt to establish a precedent of bi-directional correspondence so that subsequent malicious emails would not be flagged by traditional security tools, the attacker did not initially include suspicious links, attachments or use solicitous or inducive language within their initial emails.

Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Figure 1: Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.
Figure 2: Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.  

To accomplish the next stage of their attack, the attacker shared a link, hidden behind the inducing text “VIEW ALL FILES”, to a malicious file using the Hightail cloud storage service. This is also a common method employed by attackers to evade detection, as this method of file sharing does not involve attachments that can be scanned by traditional security tools, and legitimate cloud storage services are less likely to be blocked.

OSINT analysis on the malicious link link shows the file hosted on Hightail was a HTML file with the associated message “Following up on our LinkedIn conversation”.  Further analysis suggests the file contained obfuscated Javascript that, once opened, would automatically redirect the user to a malicious domain impersonating a legitimate Microsoft login page for credential harvesting purposes.  

The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Figure 3: The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Screenshot of fraudulent Microsoft Sign In page hosted on the malicous credential harvesting domain.
Figure 4: Screenshot of fraudulent Microsoft Sign In page hosted on the malicious credential harvesting domain.

Although there was prior email correspondence with the attacker, this email was not automatically deemed safe by Darktrace and was further analyzed for unusual properties and unusual communications for the recipient and the recipient’s peer group.  

Darktrace determined that:

  • It was unusual for this file storage solution to be referenced in communications to the user and the wider network
  • Textual properties of the email body suggested a high level of inducement from the sender, with a high level of focus on the phishing link.
  • The full link contained suspicious properties suggesting it is high risk.
Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.
Figure 5: Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.  

Based on these anomalies, Darktrace initially moved the phishing email to the junk folder and locked the link, preventing the user from directly accessing the malicious file hosted on Hightail.  However, the customer’s security team released the email, likely upon end-user request, allowing the target user to access the file and ultimately enter their credentials into that credential harvesting domain.

Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.
Figure 6: Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.

Lateral Movement

Correspondence between the attacker and target continued for two days after the credential harvesting payload was delivered.  Five days later, Darktrace detected an unusual login using multi-factor authentication (MFA) from a rare external IP and ASN that coincided with Darktrace/Email logs showing access to the credential harvesting link.

This attempt to bypass MFA, known as an Office365 Shell WCSS attack, was likely achieved by inducing the target to enter their credentials and legitimate MFA token into the fake Microsoft login page. This was then relayed to Microsoft by the attacker and used to obtain a legitimate session. The attacker then reused the legitimate token to log into Exchange Online from a different IP and registered their own device for MFA.

Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.
Figure 7: Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.

Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge.
Figure 8: Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge. Highlighted in orange and red is the malicious activity using Chrome.

The IP addresses used by the attacker appear to be part of anonymization infrastructure, but are not associated with any known indicators of compromise (IoCs) that signature-based detections would identify [9] [10].

In addition to  logins being observed within half an hour of each other from multiple geographically impossible locations (San Francisco and Phoenix), the unexpected usage of Chrome browser, compared to Edge browser previously used, provided Darktrace with further evidence that this activity was unlikely to originate from the legitimate user.  Although the user was a salesperson who frequently travelled for their role, Darktrace’s Self-Learning AI understood that the multiple logins from these locations was highly unusual at the user and group level, and coupled with the subsequent unexpected account modification, was a likely indicator of account compromise.  

Accomplish mission

Although the email had been manually released by the security team, allowing the attack to propagate, additional layers of defense were triggered as Darktrace's Autonomous Response initiated “Disable User” actions upon detection of the multiple unusual logins and the unauthorized registration of security information.  

However, the customer had configured Autonomous Response to require human confirmation, therefore no actions were taken until the security team manually approved them over two hours later. In that time, access to mail items and other SharePoint files from the unusual IP address was detected, suggesting a potential loss of confidentiality to business data.

Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.
Figure 9: Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.

However, it appears that the attacker was able to maintain access to the compromised account, as login and mail access events from 199.231.85[.]153 continued to be observed until the afternoon of the next day.  

Conclusion

This incident demonstrates the necessity of AI to security teams, with Darktrace’s ActiveAI Security Platform detecting a sophisticated phishing attack where human judgement fell short and initiated a real-time response when security teams could not physically respond as fast.  

Security teams are very familiar with social engineering and impersonation attempts, but these attacks remain highly prevalent due to the widespread adoption of technologies that enable these techniques to be deployed with great sophistication and ease.  In particular, the popularity of information-rich platforms like LinkedIn that are geared towards connecting with unknown people make it an attractive initial access point for malicious attackers.

In the second half of 2023 alone, over 200 thousand fake profiles were reported by members on LinkedIn [11].  Fake profiles can be highly sophisticated, use professional images, contain compelling descriptions, reference legitimate company listings and present believable credentials.  

It is unrealistic to expect end users to defend themselves against such sophisticated impersonation attempts. Moreover, it is extremely difficult for human defenders to recognize every fraudulent interaction amidst a sea of fake profiles. Instead, defenders should leverage AI, which can conduct autonomous investigations without human biases and limitations. AI-driven security can ensure successful detection of fraudulent or malicious activity by learning what real users and devices look like and identifying deviations from their learned behaviors that may indicate an emerging threat.

Appendices

Darktrace Model Detections

DETECT/ Apps

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and Account Update

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compliance / M365 Security Information Modified

RESPOND/ Apps

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Unusual Activity Block

DETECT & RESPOND/ Email

·      Link / High Risk Link + Low Sender Association

·      Link / New Correspondent Classified Link

·      Link / Watched Link Type

·      Antigena Anomaly

·      Association / Unknown Sender

·      History / New Sender

·      Link / Link to File Storage

·      Link / Link to File Storage + Unknown Sender

·      Link / Low Link Association

List of IoCs

·      142.252.106[.]251 - IP            - Possible malicious IP used by attacker during cloud account compromise

·      199.231.85[.]153 – IP - Probable malicious IP used by attacker during cloud account compromise

·      vukoqo.hebakyon[.]com – Endpoint - Credential harvesting endpoint

MITRE ATT&CK Mapping

·      Resource Development - T1586 - Compromise Accounts

·      Resource Development - T1598.003 – Spearphishing Link

·      Persistence - T1078.004 - Cloud Accounts

·      Persistence - T1556.006 - Modify Authentication Process: Multi-Factor Authentication

·      Reconnaissance - T1593.001 – Social Media

·      Reconnaissance - T1598 – Phishing for Information

·      Reconnaissance - T1589.001 – Credentials

·      Reconnaissance - T1591.002 – Business Relationships

·      Collection - T1111 – Multifactor Authentication Interception

·      Collection - T1539 – Steal Web Session Cookie

·      Lateral Movement - T1021.007 – Cloud Services

·      Lateral Movement - T1213.002 - Sharepoint

References

[1] Jessica Barker, Hacked: The secrets behind cyber attacks, (London: Kogan Page, 2024), p. 130-146.

[2] https://www.bitdefender.co.uk/blog/hotforsecurity/5-linkedin-scams-and-how-to-avoid-them/

[3] https://www.washingtonpost.com/technology/2023/08/31/linkedin-personal-posts/

[4] https://www.forbes.com/sites/joshbersin/2012/05/21/facebook-vs-linkedin-whats-the-difference/

[5] https://thelinkedblog.com/2022/3-reasons-why-you-should-make-your-profile-public-1248/

[6] https://www.linkedin.com/pulse/50-linkedin-statistics-every-professional-should-ti9ue

[7] https://www.nytimes.com/2022/09/24/business/linkedin-social-experiments.html

[8] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

[9] https://spur.us/context/142.252.106[.]251

[10] https://spur.us/context/199.231.85[.]153

[11]https://www.statista.com/statistics/1328849/linkedin-number-of-fake-accounts-detected-and-removed

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

vendor email compromiseDefault blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author

Blog

/

OT

/

October 1, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI