Blog
/
Network
/
July 26, 2024

Understanding the WarmCookie Backdoor Threat

Discover effective strategies for disarming the WarmCookie backdoor and securing your systems against this persistent threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2024

What is WarmCookie malware?

WarmCookie, also known as BadSpace [2], is a two-stage backdoor tool that provides functionality for threat actors to retrieve victim information and launch additional payloads. The malware is primarily distributed via phishing campaigns according to multiple open-source intelligence (OSINT) providers.

Backdoor malware: A backdoor tool is a piece of software used by attackers to gain and maintain unauthorized access to a system. It bypasses standard authentication and security mechanisms, allowing the attacker to control the system remotely.

Two-stage backdoor malware: This means the backdoor operates in two distinct phases:

1. Initial Stage: The first stage involves the initial infection and establishment of a foothold within the victim's system. This stage is often designed to be small and stealthy to avoid detection.

2. Secondary Stage: Once the initial stage has successfully compromised the system, it retrieves or activates the second stage payload. This stage provides more advanced functionalities for the attacker, such as extensive data exfiltration, deeper system control, or the deployment of additional malicious payloads.

How does WarmCookie malware work?

Reported attack patterns include emails attempting to impersonate recruitment firms such as PageGroup, Michael Page, and Hays. These emails likely represented social engineering tactics, with attackers attempting to manipulate jobseekers into engaging with the emails and following malicious links embedded within [3].

This backdoor tool also adopts stealth and evasion tactics to avoid the detection of traditional security tools. Reported evasion tactics included custom string decryption algorithms, as well as dynamic API loading to prevent researchers from analyzing and identifying the core functionalities of WarmCookie [1].

Before this backdoor makes an outbound network request, it is known to capture details from the target machine, which can be used for fingerprinting and identification [1], this includes:

- Computer name

- Username

- DNS domain of the machine

- Volume serial number

WarmCookie samples investigated by external researchers were observed communicating over HTTP to a hardcoded IP address using a combination of RC4 and Base64 to protect its network traffic [1]. Ultimately, threat actors could use this backdoor to deploy further malicious payloads on targeted networks, such as ransomware.

Darktrace Coverage of WarmCookie

Between April and June 2024, Darktrace’s Threat Research team investigated suspicious activity across multiple customer networks indicating that threat actors were utilizing the WarmCookie backdoor tool. Observed cases across customer environments all included the download of unusual executable (.exe) files and suspicious outbound connectivity.

Affected devices were all observed making external HTTP requests to the German-based external IP, 185.49.69[.]41, and the URI, /data/2849d40ade47af8edfd4e08352dd2cc8.

The first investigated instance occurred between April 23 and April 24, when Darktrace detected a a series of unusual file download and outbound connectivity on a customer network, indicating successful WarmCookie exploitation. As mentioned by Elastic labs, "The PowerShell script abuses the Background Intelligent Transfer Service (BITS) to download WarmCookie and run the DLL with the Start export" [1].

Less than a minute later, the same device was observed making HTTP requests to the rare external IP address: 185.49.69[.]41, which had never previously been observed on the network, for the URI /data/b834116823f01aeceed215e592dfcba7. The device then proceeded to download masqueraded executable file from this endpoint. Darktrace recognized that these connections to an unknown endpoint, coupled with the download of a masqueraded file, likely represented malicious activity.

Following this download, the device began beaconing back to the same IP, 185.49.69[.]41, with a large number of external connections observed over port 80.  This beaconing related behavior could further indicate malicious software communicating with command-and-control (C2) servers.

Darktrace’s model alert coverage included the following details:

[Model Alert: Device / Unusual BITS Activity]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:10:23 UTC

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Microsoft BITS/7.8

[Model Alert: Anomalous File / EXE from Rare External Location]

[Model Alert: Anomalous File / Masqueraded File Transfer]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:11:18 UTC

- Destination IP: 185.49.69[.]41

- Destination port: 80

- Protocol: TCP

- Application protocol: HTTP

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)

- Event details: File: http[:]//185.49.69[.]41/data/b834116823f01aeceed215e592dfcba7, total seen size: 144384B, direction: Incoming

- SHA1 file hash: 4ddf0d9c750bfeaebdacc14152319e21305443ff

- MD5 file hash: b09beb0b584deee198ecd66976e96237

[Model Alert: Compromise / Beaconing Activity To External Rare]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:15:24 UTC

- Destination IP: 185.49.69[.]41

- Destination port: 80

- Protocol: TCP

- Application protocol: HTTP

- ASN: AS28753 Leaseweb Deutschland GmbH  

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)

Between May 7 and June 4, Darktrace identified a wide range of suspicious external connectivity on another customer’s environment. Darktrace’s Threat Research team further investigated this activity and assessed it was likely indicative of WarmCookie exploitation on customer devices.

Similar to the initial use case, BITS activity was observed on affected devices, which is utilized to download WarmCookie [1]. This initial behavior was observed with the device after triggering the model: Device / Unusual BITS Activity on May 7.

Just moments later, the same device was observed making HTTP requests to the aforementioned German IP address, 185.49.69[.]41 using the same URI /data/2849d40ade47af8edfd4e08352dd2cc8, before downloading a suspicious executable file.

Just like the first use case, this device followed up this suspicious download with a series of beaconing connections to 185.49.69[.]41, again with a large number of connections via port 80.

Similar outgoing connections to 185.49.69[.]41 and model alerts were observed on additional devices during the same timeframe, indicating that numerous customer devices had been compromised.

Darktrace’s model alert coverage included the following details:

[Model Alert: Device / Unusual BITS Activity]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:03:23 UTC

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Microsoft BITS/7.8

[Model Alert: Anomalous File / EXE from Rare External Location]

[Model Alert: Anomalous File / Masqueraded File Transfer]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:03:35 UTC  

- Destination IP: 185.49.69[.]41

- Protocol: TCP

- ASN: AS28753 Leaseweb Deutschland GmbH

- Event details: File: http[:]//185.49.69[.]41/data/2849d40ade47af8edfd4e08352dd2cc8, total seen size: 72704B, direction: Incoming

- SHA1 file hash: 5b0a35c574ee40c4bccb9b0b942f9a9084216816

- MD5 file hash: aa9a73083184e1309431b3c7a3e44427  

[Model Alert: Anomalous Connection / New User Agent to IP Without Hostname]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:04:14 UTC  

- Destination IP: 185.49.69[.]41  

- Application protocol: HTTP  

- URI: /data/2849d40ade47af8edfd4e08352dd2cc8

- User agent: Microsoft BITS/7.8  

[Model Alert: Compromise / HTTP Beaconing to New Endpoint]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:08:47 UTC

- Destination IP: 185.49.69[.]41

- Protocol: TCP

- Application protocol: HTTP  

- ASN: AS28753 Leaseweb Deutschland GmbH  

- URI: /  

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705) \

Cyber AI Analyst Coverage Details around the external destination, ‘185.49.69[.]41’.
Figure 1: Cyber AI Analyst Coverage Details around the external destination, ‘185.49.69[.]41’.
External Sites Summary verifying the geographical location of the external IP, 185.49.69[.]41’.
Figure 2: External Sites Summary verifying the geographical location of the external IP, 185.49.69[.]41’.

Fortunately, this particular customer was subscribed to Darktrace’s Proactive Threat Notification (PTN) service and the Darktrace Security Operation Center (SOC) promptly investigated the activity and alerted the customer. This allowed their security team to address the activity and begin their own remediation process.

In this instance, Darktrace’s Autonomous Response capability was configured in Human Confirmation mode, meaning any mitigative actions required manual application by the customer’s security team.

Despite this, Darktrace recommended two actions to contain the activity: blocking connections to the suspicious IP address 185.49.69[.]41 and any IP addresses ending with '69[.]41', as well as the ‘Enforce Pattern of Life’ action. By enforcing a pattern of life, Darktrace can restrict a device (or devices) to its learned behavior, allowing it to continue regular business activities uninterrupted while blocking any deviations from expected activity.

Actions suggested by Darktrace to contain the emerging activity, including blocking connections to the suspicious endpoint and restricting the device to its ‘pattern of life’.
Figure 3: Actions suggested by Darktrace to contain the emerging activity, including blocking connections to the suspicious endpoint and restricting the device to its ‘pattern of life’.

Conclusion

Backdoor tools like WarmCookie enable threat actors to gather and leverage information from target systems to deploy additional malicious payloads, escalating their cyber attacks. Given that WarmCookie’s primary distribution method seems to be through phishing campaigns masquerading as trusted recruitments firms, it has the potential to affect a large number of organizations.

In the face of such threats, Darktrace’s behavioral analysis provides organizations with full visibility over anomalous activity on their digital estates, regardless of whether the threat bypasses by human security teams or email security tools. While threat actors seemingly managed to evade customers’ native email security and gain access to their networks in these cases, Darktrace identified the suspicious behavior associated with WarmCookie and swiftly notified customer security teams.

Had Darktrace’s Autonomous Response capability been fully enabled in these cases, it could have blocked any suspicious connections and subsequent activity in real-time, without the need of human intervention, effectively containing the attacks in the first instance.

Credit to Justin Torres, Cyber Security Analyst and Dylan Hinz, Senior Cyber Security Analyst

Appendices

Darktrace Model Detections

- Anomalous File / EXE from Rare External Location

- Anomalous File / Masqueraded File Transfer  

- Compromise / Beacon to Young Endpoint  

- Compromise / Beaconing Activity To External Rare  

- Compromise / HTTP Beaconing to New Endpoint  

- Compromise / HTTP Beaconing to Rare Destination

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Successful Connections

- Compromise / Quick and Regular Windows HTTP Beaconing

- Compromise / SSL or HTTP Beacon

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Sustained SSL or HTTP Increase

- Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

- Anomalous Connection / Multiple Failed Connections to Rare Endpoint

- Anomalous Connection / New User Agent to IP Without Hostname

- Compromise / Sustained SSL or HTTP Increase

AI Analyst Incident Coverage:

- Unusual Repeated Connections

- Possible SSL Command and Control to Multiple Endpoints

- Possible HTTP Command and Control

- Suspicious File Download

Darktrace RESPOND Model Detections:

- Antigena / Network / External Threat / Antigena Suspicious File Block

- Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.49.69[.]41 – IP Address – WarmCookie C2 Endpoint

/data/2849d40ade47af8edfd4e08352dd2cc8 – URI – Likely WarmCookie URI

/data/b834116823f01aeceed215e592dfcba7 – URI – Likely WarmCookie URI

4ddf0d9c750bfeaebdacc14152319e21305443ff  - SHA1 Hash  – Possible Malicious File

5b0a35c574ee40c4bccb9b0b942f9a9084216816  - SHA1 Hash – Possiblem Malicious File

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Drive-by Compromise - INITIAL ACCESS - T1189

Ingress Tool Transfer - COMMAND AND CONTROL - T1105

Malware - RESOURCE DEVELOPMENT - T1588.001 - T1588

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Browser Extensions - PERSISTENCE - T1176

Application Layer Protocol - COMMAND AND CONTROL - T1071

Fallback Channels - COMMAND AND CONTROL - T1008

Multi-Stage Channels - COMMAND AND CONTROL - T1104

Non-Standard Port - COMMAND AND CONTROL - T1571

One-Way Communication - COMMAND AND CONTROL - T1102.003 - T1102

Encrypted Channel - COMMAND AND CONTROL - T1573

External Proxy - COMMAND AND CONTROL - T1090.002 - T1090

Non-Application Layer Protocol - COMMAND AND CONTROL - T1095

References

[1] https://www.elastic.co/security-labs/dipping-into-danger

[2] https://www.gdatasoftware.com/blog/2024/06/37947-badspace-backdoor

[3] https://thehackernews.com/2024/06/new-phishing-campaign-deploys.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI