ブログ
/
Network
/
July 26, 2024

Understanding the WarmCookie Backdoor Threat

Discover effective strategies for disarming the WarmCookie backdoor and securing your systems against this persistent threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2024

What is WarmCookie malware?

WarmCookie, also known as BadSpace [2], is a two-stage backdoor tool that provides functionality for threat actors to retrieve victim information and launch additional payloads. The malware is primarily distributed via phishing campaigns according to multiple open-source intelligence (OSINT) providers.

Backdoor malware: A backdoor tool is a piece of software used by attackers to gain and maintain unauthorized access to a system. It bypasses standard authentication and security mechanisms, allowing the attacker to control the system remotely.

Two-stage backdoor malware: This means the backdoor operates in two distinct phases:

1. Initial Stage: The first stage involves the initial infection and establishment of a foothold within the victim's system. This stage is often designed to be small and stealthy to avoid detection.

2. Secondary Stage: Once the initial stage has successfully compromised the system, it retrieves or activates the second stage payload. This stage provides more advanced functionalities for the attacker, such as extensive data exfiltration, deeper system control, or the deployment of additional malicious payloads.

How does WarmCookie malware work?

Reported attack patterns include emails attempting to impersonate recruitment firms such as PageGroup, Michael Page, and Hays. These emails likely represented social engineering tactics, with attackers attempting to manipulate jobseekers into engaging with the emails and following malicious links embedded within [3].

This backdoor tool also adopts stealth and evasion tactics to avoid the detection of traditional security tools. Reported evasion tactics included custom string decryption algorithms, as well as dynamic API loading to prevent researchers from analyzing and identifying the core functionalities of WarmCookie [1].

Before this backdoor makes an outbound network request, it is known to capture details from the target machine, which can be used for fingerprinting and identification [1], this includes:

- Computer name

- Username

- DNS domain of the machine

- Volume serial number

WarmCookie samples investigated by external researchers were observed communicating over HTTP to a hardcoded IP address using a combination of RC4 and Base64 to protect its network traffic [1]. Ultimately, threat actors could use this backdoor to deploy further malicious payloads on targeted networks, such as ransomware.

Darktrace Coverage of WarmCookie

Between April and June 2024, Darktrace’s Threat Research team investigated suspicious activity across multiple customer networks indicating that threat actors were utilizing the WarmCookie backdoor tool. Observed cases across customer environments all included the download of unusual executable (.exe) files and suspicious outbound connectivity.

Affected devices were all observed making external HTTP requests to the German-based external IP, 185.49.69[.]41, and the URI, /data/2849d40ade47af8edfd4e08352dd2cc8.

The first investigated instance occurred between April 23 and April 24, when Darktrace detected a a series of unusual file download and outbound connectivity on a customer network, indicating successful WarmCookie exploitation. As mentioned by Elastic labs, "The PowerShell script abuses the Background Intelligent Transfer Service (BITS) to download WarmCookie and run the DLL with the Start export" [1].

Less than a minute later, the same device was observed making HTTP requests to the rare external IP address: 185.49.69[.]41, which had never previously been observed on the network, for the URI /data/b834116823f01aeceed215e592dfcba7. The device then proceeded to download masqueraded executable file from this endpoint. Darktrace recognized that these connections to an unknown endpoint, coupled with the download of a masqueraded file, likely represented malicious activity.

Following this download, the device began beaconing back to the same IP, 185.49.69[.]41, with a large number of external connections observed over port 80.  This beaconing related behavior could further indicate malicious software communicating with command-and-control (C2) servers.

Darktrace’s model alert coverage included the following details:

[Model Alert: Device / Unusual BITS Activity]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:10:23 UTC

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Microsoft BITS/7.8

[Model Alert: Anomalous File / EXE from Rare External Location]

[Model Alert: Anomalous File / Masqueraded File Transfer]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:11:18 UTC

- Destination IP: 185.49.69[.]41

- Destination port: 80

- Protocol: TCP

- Application protocol: HTTP

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)

- Event details: File: http[:]//185.49.69[.]41/data/b834116823f01aeceed215e592dfcba7, total seen size: 144384B, direction: Incoming

- SHA1 file hash: 4ddf0d9c750bfeaebdacc14152319e21305443ff

- MD5 file hash: b09beb0b584deee198ecd66976e96237

[Model Alert: Compromise / Beaconing Activity To External Rare]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:15:24 UTC

- Destination IP: 185.49.69[.]41

- Destination port: 80

- Protocol: TCP

- Application protocol: HTTP

- ASN: AS28753 Leaseweb Deutschland GmbH  

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)

Between May 7 and June 4, Darktrace identified a wide range of suspicious external connectivity on another customer’s environment. Darktrace’s Threat Research team further investigated this activity and assessed it was likely indicative of WarmCookie exploitation on customer devices.

Similar to the initial use case, BITS activity was observed on affected devices, which is utilized to download WarmCookie [1]. This initial behavior was observed with the device after triggering the model: Device / Unusual BITS Activity on May 7.

Just moments later, the same device was observed making HTTP requests to the aforementioned German IP address, 185.49.69[.]41 using the same URI /data/2849d40ade47af8edfd4e08352dd2cc8, before downloading a suspicious executable file.

Just like the first use case, this device followed up this suspicious download with a series of beaconing connections to 185.49.69[.]41, again with a large number of connections via port 80.

Similar outgoing connections to 185.49.69[.]41 and model alerts were observed on additional devices during the same timeframe, indicating that numerous customer devices had been compromised.

Darktrace’s model alert coverage included the following details:

[Model Alert: Device / Unusual BITS Activity]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:03:23 UTC

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Microsoft BITS/7.8

[Model Alert: Anomalous File / EXE from Rare External Location]

[Model Alert: Anomalous File / Masqueraded File Transfer]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:03:35 UTC  

- Destination IP: 185.49.69[.]41

- Protocol: TCP

- ASN: AS28753 Leaseweb Deutschland GmbH

- Event details: File: http[:]//185.49.69[.]41/data/2849d40ade47af8edfd4e08352dd2cc8, total seen size: 72704B, direction: Incoming

- SHA1 file hash: 5b0a35c574ee40c4bccb9b0b942f9a9084216816

- MD5 file hash: aa9a73083184e1309431b3c7a3e44427  

[Model Alert: Anomalous Connection / New User Agent to IP Without Hostname]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:04:14 UTC  

- Destination IP: 185.49.69[.]41  

- Application protocol: HTTP  

- URI: /data/2849d40ade47af8edfd4e08352dd2cc8

- User agent: Microsoft BITS/7.8  

[Model Alert: Compromise / HTTP Beaconing to New Endpoint]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:08:47 UTC

- Destination IP: 185.49.69[.]41

- Protocol: TCP

- Application protocol: HTTP  

- ASN: AS28753 Leaseweb Deutschland GmbH  

- URI: /  

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705) \

Cyber AI Analyst Coverage Details around the external destination, ‘185.49.69[.]41’.
Figure 1: Cyber AI Analyst Coverage Details around the external destination, ‘185.49.69[.]41’.
External Sites Summary verifying the geographical location of the external IP, 185.49.69[.]41’.
Figure 2: External Sites Summary verifying the geographical location of the external IP, 185.49.69[.]41’.

Fortunately, this particular customer was subscribed to Darktrace’s Proactive Threat Notification (PTN) service and the Darktrace Security Operation Center (SOC) promptly investigated the activity and alerted the customer. This allowed their security team to address the activity and begin their own remediation process.

In this instance, Darktrace’s Autonomous Response capability was configured in Human Confirmation mode, meaning any mitigative actions required manual application by the customer’s security team.

Despite this, Darktrace recommended two actions to contain the activity: blocking connections to the suspicious IP address 185.49.69[.]41 and any IP addresses ending with '69[.]41', as well as the ‘Enforce Pattern of Life’ action. By enforcing a pattern of life, Darktrace can restrict a device (or devices) to its learned behavior, allowing it to continue regular business activities uninterrupted while blocking any deviations from expected activity.

Actions suggested by Darktrace to contain the emerging activity, including blocking connections to the suspicious endpoint and restricting the device to its ‘pattern of life’.
Figure 3: Actions suggested by Darktrace to contain the emerging activity, including blocking connections to the suspicious endpoint and restricting the device to its ‘pattern of life’.

Conclusion

Backdoor tools like WarmCookie enable threat actors to gather and leverage information from target systems to deploy additional malicious payloads, escalating their cyber attacks. Given that WarmCookie’s primary distribution method seems to be through phishing campaigns masquerading as trusted recruitments firms, it has the potential to affect a large number of organizations.

In the face of such threats, Darktrace’s behavioral analysis provides organizations with full visibility over anomalous activity on their digital estates, regardless of whether the threat bypasses by human security teams or email security tools. While threat actors seemingly managed to evade customers’ native email security and gain access to their networks in these cases, Darktrace identified the suspicious behavior associated with WarmCookie and swiftly notified customer security teams.

Had Darktrace’s Autonomous Response capability been fully enabled in these cases, it could have blocked any suspicious connections and subsequent activity in real-time, without the need of human intervention, effectively containing the attacks in the first instance.

Credit to Justin Torres, Cyber Security Analyst and Dylan Hinz, Senior Cyber Security Analyst

Appendices

Darktrace Model Detections

- Anomalous File / EXE from Rare External Location

- Anomalous File / Masqueraded File Transfer  

- Compromise / Beacon to Young Endpoint  

- Compromise / Beaconing Activity To External Rare  

- Compromise / HTTP Beaconing to New Endpoint  

- Compromise / HTTP Beaconing to Rare Destination

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Successful Connections

- Compromise / Quick and Regular Windows HTTP Beaconing

- Compromise / SSL or HTTP Beacon

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Sustained SSL or HTTP Increase

- Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

- Anomalous Connection / Multiple Failed Connections to Rare Endpoint

- Anomalous Connection / New User Agent to IP Without Hostname

- Compromise / Sustained SSL or HTTP Increase

AI Analyst Incident Coverage:

- Unusual Repeated Connections

- Possible SSL Command and Control to Multiple Endpoints

- Possible HTTP Command and Control

- Suspicious File Download

Darktrace RESPOND Model Detections:

- Antigena / Network / External Threat / Antigena Suspicious File Block

- Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.49.69[.]41 – IP Address – WarmCookie C2 Endpoint

/data/2849d40ade47af8edfd4e08352dd2cc8 – URI – Likely WarmCookie URI

/data/b834116823f01aeceed215e592dfcba7 – URI – Likely WarmCookie URI

4ddf0d9c750bfeaebdacc14152319e21305443ff  - SHA1 Hash  – Possible Malicious File

5b0a35c574ee40c4bccb9b0b942f9a9084216816  - SHA1 Hash – Possiblem Malicious File

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Drive-by Compromise - INITIAL ACCESS - T1189

Ingress Tool Transfer - COMMAND AND CONTROL - T1105

Malware - RESOURCE DEVELOPMENT - T1588.001 - T1588

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Browser Extensions - PERSISTENCE - T1176

Application Layer Protocol - COMMAND AND CONTROL - T1071

Fallback Channels - COMMAND AND CONTROL - T1008

Multi-Stage Channels - COMMAND AND CONTROL - T1104

Non-Standard Port - COMMAND AND CONTROL - T1571

One-Way Communication - COMMAND AND CONTROL - T1102.003 - T1102

Encrypted Channel - COMMAND AND CONTROL - T1573

External Proxy - COMMAND AND CONTROL - T1090.002 - T1090

Non-Application Layer Protocol - COMMAND AND CONTROL - T1095

References

[1] https://www.elastic.co/security-labs/dipping-into-danger

[2] https://www.gdatasoftware.com/blog/2024/06/37947-badspace-backdoor

[3] https://thehackernews.com/2024/06/new-phishing-campaign-deploys.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

November 27, 2025

From Amazon to Louis Vuitton: How Darktrace Detects Black Friday Phishing Attacks

Default blog imageDefault blog image

Why Black Friday Drives a Surge in Phishing Attacks

In recent years, Black Friday has shifted from a single day of online retail sales and discounts to an extended ‘Black Friday Week’, often preceded by weeks of online hype. During this period, consumers are inundated with promotional emails and marketing campaigns as legitimate retailers compete for attention.

Unsurprisingly, this surge in legitimate communications creates an ideal environment for threat actors to launch targeted phishing campaigns designed to mimic legitimate retail emails. These campaigns often employ social engineering techniques that exploit urgency, exclusivity, and consumer trust in well-known brands, tactics designed to entice recipients into opening emails and clicking on malicious links.

Additionally, given the seasonal nature of Black Friday and the ever-changing habits of consumers, attackers adopt new tactics and register fresh domains each year, rather than reusing domains previously flagged as spam or phishing endpoints. While this may pose a challenge for traditional email security tools, it presents no such difficulty for Darktrace / EMAIL and its anomaly-based approach.

In the days and weeks leading up to ‘Black Friday’, Darktrace observed a spike in sophisticated phishing campaigns targeting consumers, demonstrating how attackers combine phycological manipulation with technical evasion to bypass basic security checks during this high-traffic period. This blog showcases several notable examples of highly convincing phishing emails detected and contained by Darktrace / EMAIL in mid to late November 2025.

Darktrace’s Black Friday Detections

Brand Impersonation: Deal Watchdogs’ Amazon Deals

The impersonation major online retailers has become a common tactic in retail-focused attacks, none more so than Amazon, which ranked as the fourth most impersonated brand in 2024, only behind Microsoft, Apple, Google, and Facebook [1]. Darktrace’s own research found Amazon to be the most mimicked brand, making up 80% of phishing attacks in its analysis of global consumer brands.

When faced with an email that appears to come from a trusted sender like Amazon, recipients are far more likely to engage, increasing the success rate of these phishing campaigns.

In one case observed on November 16, Darktrace detected an email with the subject line “NOW LIVE: Amazon’s Best Early Black Friday Deals on Gadgets Under $60”. The email was sent to a customer by the sender ‘Deal Watchdogs’, in what appeared to be an attempt to masquerade as a legitimate discount-finding platform. No evidence indicated that the company was legitimate. In fact, the threat actor made no attempt to create a convincing name, and the domain appeared to be generated by a domain generation algorithm (DGA), as shown in Figure 2.

Although the email was sent by ‘Deal Watchdogs’, it attempted to impersonate Amazon by featuring realistic branding, including the Amazon logo and a shade of orange similar to that used by them for the ‘CLICK HERE’ button and headline text.

Figure 1: The contents of the email observed by Darktrace, featuring authentic-looking Amazon branding.

Darktrace identified that the email, marked as urgent by the sender, contained a suspicious link to a Google storage endpoint (storage.googleapis[.]com), which had been hidden by the text “CLICK HERE”. If clicked, the link could have led to a credential harvester or served as a delivery vector for a malicious payload hosted on the Google storage platform.

Fortunately, Darktrace immediately identified the suspicious nature of this email and held it before delivery, preventing recipients from ever receiving or interacting with the malicious content.

Figure 2: Darktrace / EMAIL’s detection of the malicious phishing email sent to a customer.

Around the same time, Darktrace detected a similar email attempting to spoof Amazon on another customer’s network with the subject line “Our 10 Favorite Deals on Amazon That Started Today”, also sent by ‘Deal Watchdogs,’ suggesting a broader campaign.

Analysis revealed that this email originated from the domain petplatz[.]com, a fake marketing domain previously linked to spam activity according to open-source intelligence (OSINT) [2].

Brand Impersonation: Louis Vuitton

A few days later, on November 20, Darktrace / EMAIL detected a phishing email attempting to impersonate the luxury fashion brand Louis Vuitton. At first glance, the email, sent under the name ‘Louis Vuitton’ and titled “[Black Friday 2025] Discover Your New Favorite Louis Vuitton Bag – Elegance Starts Here”, appeared to be a legitimate Black Friday promotion. However, Darktrace’s analysis uncovered several red flags indicating a elaborate brand impersonation attempt.

The email was not sent by Louis Vuitton but by rskkqxyu@bookaaatop[.]ru, a Russia-based domain never before observed on the customer’s network. Darktrace flagged this as suspicious, noting that .ru domains were highly unusual for this recipient’s environment, further reinforcing the likelihood of malicious intent. Subsequent analysis revealed that the domain had only recently registered and was flagged as malicious by multiple OSINT sources [3].

Figure 3: Darktrace / EMAIL’s detection of the malicious email attempting to spoofLouis Vuitton, originating from a suspicious Russia-based domain.

Darktrace further noted that the email contained a highly suspicious link hidden behind the text “View Collection” and “Unsubscribe,” ensuring that any interaction, whether visiting the supposed ‘handbag store’ or attempting to opt out of marketing emails, would direct recipients to the same endpoint. The link resolved to xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф), a domain confirmed as malicious by multiple OSINT sources [4]. At the time of analysis, the domain was inaccessible, likely due to takedown efforts or the short-lived nature of the campaign.

Darktrace / EMAIL blocked this email before it reached customer inboxes, preventing recipients from interacting with the malicious content and averting any disruption.

Figure 4: The suspicious domain linked in the Louis Vuitton phishing email, now defunct.

Too good to be true?

Aside from spoofing well-known brands, threat actors frequently lure consumers with “too good to be true” luxury offers, a trend Darktrace observed in multiple cases throughout November.

In one instance, Darktrace identified an email with the subject line “[Black Friday 2025] Luxury Watches Starting at $250.” Emails contained a malicious phishing link, hidden behind text like “Rolex Starting from $250”, “Shop Now”, and “Unsubscribe”.

Figure 5: Example of a phishing email detected by Darktrace, containing malicious links concealed behind seemingly innocuous text.

Similarly to the Louis Vuitton email campaign described above, this malicious link led to a .ru domain (hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html), which had been flagged as malicious by multiple sources [5].

Figure 6: Darktrace / EMAIL’s detection of a malicious email promoting a fake luxury watch store, which was successfully held from recipient inboxes.

If accessed, this domain would redirect users to luxy-rox[.]com, a recently created domain (15 days old at the time of writing) that has also been flagged as malicious by OSINT sources [6]. When visited, the redirect domain displayed a convincing storefront advertising high-end watches at heavily discounted prices.

Figure 7: The fake storefront presented upon visiting the redirectdomain, luxy-rox[.]com.

Although the true intent of this domain could not be confirmed, it was likely a scam site or a credential-harvesting operation, as users were required to create an account to complete a purchase. As of the time or writing, the domain in no longer accessible .

This email illustrates a layered evasion tactic: attackers employed multiple domains, rapid domain registration, and concealed redirects to bypass detection. By leveraging luxury branding and urgency-driven discounts, the campaign sought to exploit seasonal shopping behaviors and entice victims into clicking.

Staying Protected During Seasonal Retail Scams

The investigation into these Black Friday-themed phishing emails highlights a clear trend: attackers are exploiting seasonal shopping events with highly convincing campaigns. Common tactics observed include brand impersonation (Amazon, Louis Vuitton, luxury watch brands), urgency-driven subject lines, and hidden malicious links often hosted on newly registered domains or cloud services.

These campaigns frequently use redirect chains, short-lived infrastructure, and psychological hooks like exclusivity and luxury appeal to bypass user scepticism and security filters. Organizations should remain vigilant during retail-heavy periods, reinforcing user awareness training, link inspection practices, and anomaly-based detection to mitigate these evolving threats.

Credit to Ryan Traill (Analyst Content Lead) and Owen Finn (Cyber Analyst)

Appendices

References

1.        https://keepnetlabs.com/blog/top-5-most-spoofed-brands-in-2024

2.        https://www.virustotal.com/gui/domain/petplatz.com

3.        https://www.virustotal.com/gui/domain/bookaaatop.ru

4.        https://www.virustotal.com/gui/domain/xn--80aaae9btead2a.xn--p1ai

5.        https://www.virustotal.com/gui/url/e2b868a74531cd779d8f4a0e1e610ec7f4efae7c29d8b8ab32c7a6740d770897?nocache=1

6.        https://www.virustotal.com/gui/domain/luxy-rox.com

Indicators of Compromise (IoCs)

IoC – Type – Description + Confidence

petplatz[.]com – Hostname – Spam domain

bookaaatop[.]ru – Hostname – Malicious Domain

xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф) – Hostname - Malicious Domain

hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html) – URL – Malicious Domain

luxy-rox[.]com – Hostname -  Malicious Domain

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

Continue reading
About the author
Ryan Traill
Analyst Content Lead

Blog

/

Network

/

November 27, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

Default blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI