Blog
/
Network
/
January 8, 2024

Uncovering CyberCartel Threats in Latin America

Examine the growing threat of cyber cartels in Latin America and learn how to safeguard against their attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Jan 2024

Introduction

In September 2023, Darktrace published its first Half-Year Threat Report, highlighting Threat Research, Security Operation Center (SOC), model breach, and Cyber AI Analyst analysis and trends across the Darktrace customer fleet. According to Darktrace’s Threat Report, the most observed threat type to affect Darktrace customers during the first half of 2023 was Malware-as-a-Service (Maas). The report highlighted a growing trend where malware strains, specifically in the MaaS ecosystem, “use cross-functional components from other strains as part of their evolution and customization” [1].  

Darktrace’s Threat Research team assessed this ‘Frankenstein’ approach would very likely increase, as shown by the fact that indicators of compromise (IoCs) are becoming “less and less mutually exclusive between malware strains as compromised infrastructure is used by multiple threat actors through access brokers or the “as-a-Service” market” [1].

Darktrace investigated one such threat during the last months of summer 2023, eventually leading to the discovery of CyberCartel-related activity across a significant number of Darktrace customers, especially in Latin America.

CyberCartel Overview and Darktrace Coverage

During a threat hunt, Darktrace’s Threat Research team discovered the download of a binary with a unique Uniform Resource Identifier (URI) pattern. When examining Darktrace’s customer base, it was discovered that binaries with this same URI pattern had been downloaded by a significant number of customer accounts, especially by customers based in Latin America. Although not identical, the targets and tactics, techniques, and procedures (TTPs) resembled those mentioned in an article regarding a botnet called Fenix [2], particularly active in Latin America.

During the Threat Research team’s investigation, nearly 40 potentially affected customer accounts were identified. Darktrace’s global Threat Research team investigates pervasive threats across Darktrace’s customer base daily. This cross-fleet research is based on Darktrace’s anomaly-based detection capability, Darktrace DETECT™, and revolves around technical analysis and contextualization of detection information.

Amid the investigation, further open-source intelligence (OSINT) research revealed that most indicators observed during Darktrace’s investigations were associated to a Latin American threat group named CyberCartel, with a small number of IoCs being associated with the Fenix botnet. While CyberCartel seems to have been active since 2012 and relies on MaaS offerings from well-known malware families, Fenix botnet was allegedly created at the end of last year and “specifically targets users accessing government services, particularly tax-paying individuals in Mexico and Chile” [2].

Both groups share similar targets and TTPs, as well as objectives: installing malware with information-stealing capabilities. In the case of Fenix infections, the compromised device will be added to a botnet and execute tasks given by the attacker(s); while in the case of CyberCartel, it can lead to various types of second-stage info-stealing and Man-in-the-Browser capabilities, including retrieving system information from the compromised device, capturing screenshots of the active browsing tab, and redirecting the user to fraudulent websites such as fake banking sites. According to a report by Metabase Q [2], both groups possibly share command and control (C2) infrastructure, making accurate attribution and assessment of the confidence level for which group was affecting the customer base extremely difficult. Indeed, one of the C2 IPs (104.156.149[.]33) observed on nearly 20 customer accounts during the investigation had OSINT evidence linking it to both CyberCartel and Fenix, as well as another group known to target Mexico called Manipulated Caiman [3] [4] [5].

CyberCartel and Fenix both appear to target banking and governmental services’ users based in Latin America, especially individuals from Mexico and Chile. Target institutions purportedly include tax administration services and several banks operating in the region. Malvertising and phishing campaigns direct users to pages imitating the target institutions’ webpages and prompt the download of a compressed file advertised in a pop-up window. This file claims enhance the user’s security and privacy while navigating the webpage but instead redirects the user to a compromised website hosting a zip file, which itself contains a URL file containing instructions for retrieval of the first stage payload from a remote server.

pop-up window with malicious file
Figure 1: Example of a pop-up window asking the user to download a compressed file allegedly needed to continue navigating the portal. Connections to the domain srlxlpdfmxntetflx[.]com were observed in one account investigated by Darktrace

During their investigations, the Threat Research team observed connections to 100% rare domains (e.g., situacionfiscal[.]online, consultar-rfc[.]online, facturmx[.]info), many of them containing strings such as “mx”, “rcf” and “factur” in their domain names, prior to the downloads of files with the unique URI pattern identified during the aforementioned threat hunting session.

The reference to “rfc” is likely a reference to the Registro Federal de Contribuyentes, a unique registration number issued by Mexico’s tax collection agency, Servicio de Administración Tributaria (SAT). These domains were observed as being 100% rare for the environment and were connected to a few minutes prior to connections to CyberCartel endpoints. Most of the endpoints were newly registered, with creation dates starting from only a few months earlier in the first half of 2023. Interestingly, some of these domains were very similar to legitimate government websites, likely a tactic employed by threat actors to convince users to trust the domains and to bypass security measures.

Figure 2: Screenshot from similarweb[.]com showing the degree of affinity between malicious domains situacionfiscal[.]online and facturmx[.]info and the legitimate Mexican government hostname sat[.]gob[.]mx
Figure 3: Screenshot of the likely source infection website facturmx[.]info taken when visited in a sandbox environment

In other customer networks, connections to mail clients were observed, as well as connections to win-rar[.]com, suggesting an interaction with a compressed file. Connections to legitimate government websites were also detected around the same time in some accounts. Shortly after, the infected devices were detected connecting to 100% rare IP addresses over the HTTP protocol using WebDAV user agents such as Microsoft-WebDAV-MiniRedir/10.0.X and DavCInt. Web Distributed Authoring and Versioning, in its full form, is a legitimate extension to the HTTP protocol that allows users to remotely share, copy, move and edit files hosted on a web server. Both CyberCartel and Fenix botnet reportedly abuse this protocol to retrieve the initial payload via a shortcut link. The use (or abuse) of this protocol allows attackers to evade blocklists and streamline payload distribution. In cases investigated by Darktrace, the use of this protocol was not always considered unusual for the breach device, indicating it also was commonly used for its legitimate purposes.

HTTP methods observed included PROPFIND, GET, and OPTIONS, where a higher proportion of PROPFIND requests were observed. PROPFIND is an HTTP method related to the use of WebDAV that retrieves properties in an exactly defined, machine-readable, XML document (GET responses do not have a define format). Properties are pieces of data that describe the state of a resource, i.e., data about data [7]. They are used in distributed authoring environments to provide for efficient discovery and management of resources.  

Figure 4: Device event log showing a connection to facturmx[.]info followed by a WebDAV connection to the 100% rare IP 172.86.68[.]104

In a number of cases, connections to compromised endpoints were followed by the download of one or more executable files with names following the regex pattern /(yes|4496|[A-Za-z]{8})/(((4496|4545)[A-Za-z]{24})|Herramienta_de_Seguridad_SII).(exe|jse), for example 4496UCJlcqwxvkpXKguWNqNWDivM.exe. PROPFIND and GET HTTP requests for dynamic-link library (DLL) files such as urlmon.dll and netutils.dll were also detected. These are legitimate Windows files that are essential to handle network and internet-related tasks in Windows. Irrespective of whether they had malicious or legitimate signatures, Darktrace DETECT was able to recognize that the download of these files was suspicious with rare external endpoints not previously observed on the respective customer networks.

Figure 5: Advanced Search results showing some of the HTTP requests made by the breach device to a CyberCartel endpoint via PROPFIND, GET, or OPTIONS methods for executable and DLL files

Following Darktrace DETECT’s model breaches, these HTTP connections were investigated by Cyber AI Analyst™. AI Analyst provided a summary and further technical details of these connections, as shown in figure 6.

Figure 6: Cyber AI Analyst incident showing a summary of the event, as well as technical details. The AI investigation process is also detailed

AI Analyst searched for all HTTP connections made by the breach device and found more than 2,500 requests to more than a hundred endpoints for one given device. It then looked for the user agents responsible for these connections and found 15 possible software agents responsible for the HTTP requests, and from these identified a single suspicious software agent, Microsoft-WebDAV-Min-Redir. As mentioned previously, this is a legitimate software, but its use by the breach device was considered unusual by Darktrace’s machine learning technology. By performing analysis on thousands of connections to hundreds of endpoints at machine speed, AI Analyst is able to perform the heavy lifting on behalf of human security teams and then collate its findings in a single summary pane, giving end-users the information needed to assess a given activity and quickly start remediation as needed. This allows security teams and administrators to save precious time and provides unparalleled visibility over any potentially malicious activity on their network.

Following the successful identification of CyberCartel activity by DETECT, Darktrace RESPOND™ is then able to contain suspicious behavior, such as by restricting outgoing traffic or enforcing normal patterns of life on affected devices. This would allow customer security teams extra time to analyze potentially malicious behavior, while leaving the rest of the network free to perform business critical operations. Unfortunately, in the cases of CyberCartel compromises detected by Darktrace, RESPOND was not enabled in autonomous response mode meaning preventative actions had to be applied manually by the customer’s security team after the fact.

Figure 7. Device event log showing connections to 100% rare CyberCartel endpoint 172.86.68[.]194 and subsequent suggested RESPOND actions.

Conclusion

Threat actors targeting high-value entities such as government offices and banks is unfortunately all too commonplace.  In the case of Cyber Cartel, governmental organizations and entities, as well as multiple newspapers in the Latin America, have cautioned users against these malicious campaigns, which have occurred over the past few years [8] [9]. However, attackers continuously update their toolsets and infrastructure, quickly rendering these warnings and known-bad security precautions obsolete. In the case of CyberCartel, the abuse of the legitimate WebDAV protocol to retrieve the initial payload is just one example of this. This method of distribution has also been leveraged by in Bumblebee malware loader’s latest campaign [10]. The abuse of the legitimate WebDAV protocol to retrieve the initial CyberCartel payload outlined in this case is one example among many of threat actors adopting new distribution methods used by others to further their ends.

As threat actors continue to search for new ways of remaining undetected, notably by incorporating legitimate processes into their attack flow and utilizing non-exclusive compromised infrastructure, it is more important than ever to have an understanding of normal network operation in order to detect anomalies that are indicative of an ongoing compromise. Darktrace’s suite of products, including DETECT+RESPOND, is well placed to do just that, with machine-speed analysis, detection, and response helping security teams and administrators keep their digital environments safe from malicious actors.

Credit to: Nahisha Nobregas, SOC Analyst

References

[1] https://darktrace.com/blog/darktrace-half-year-threat-report

[2] https://www.metabaseq.com/fenix-botnet/

[3] https://perception-point.io/blog/manipulated-caiman-the-sophisticated-snare-of-mexicos-banking-predators-technical-edition/

[4] https://www.virustotal.com/gui/ip-address/104.156.149.33/community

[5] https://silent4business.com/tendencias/1

[6] https://www.metabaseq.com/cybercartel/

[7] http://www.webdav.org/specs/rfc2518.html#rfc.section.4.1

[8] https://www.csirt.gob.cl/alertas/8ffr23-01415-01/

[9] https://www.gob.mx/sat/acciones-y-programas/sitios-web-falsos

[10] https://www.bleepingcomputer.com/news/security/bumblebee-malware-returns-in-new-attacks-abusing-webdav-folders/

Appendices  

Darktrace DETECT Model Detections

AI Analyst Incidents:

• Possible HTTP Command and Control

• Suspicious File Download

Model Detections:

• Anomalous Connection / New User Agent to IP Without Hostname

• Device / New User Agent and New IP

• Anomalous File / EXE from Rare External Location

• Multiple EXE from Rare External Locations

• Anomalous File / Script from Rare External Location

List of IoCs

IoC - Type - Description + Confidence

f84bb51de50f19ec803b484311053294fbb3b523 - SHA1 hash - Likely CyberCartel Payload IoCs

4eb564b84aac7a5a898af59ee27b1cb00c99a53d - SHA1 hash - Likely CyberCartel payload

8806639a781d0f63549711d3af0f937ffc87585c - SHA1 hash - Likely CyberCartel payload

9d58441d9d31b5c4011b99482afa210b030ecac4 - SHA1 hash - Possible CyberCartel payload

37da048533548c0ad87881e120b8cf2a77528413 - SHA1 hash - Likely CyberCartel payload

2415fcefaf86a83f1174fa50444be7ea830bb4d1 - SHA1 hash - Likely CyberCartel payload

15a94c7e9b356d0ff3bcee0f0ad885b6cf9c1bb7 - SHA1 hash - Likely CyberCartel payload

cdc5da48fca92329927d9dccf3ed513dd28956af - SHA1 hash - Possible CyberCartel payload

693b869bc9ba78d4f8d415eb7016c566ead839f3 - SHA1 hash - Likely CyberCartel payload

04ce764723eaa75e4ee36b3d5cba77a105383dc5 - SHA1 hash - Possible CyberCartel payload

435834167fd5092905ee084038eee54797f4d23e - SHA1 hash - Possible CyberCartel payload

3341b4f46c2f45b87f95168893a7485e35f825fe - SHA1 hash - Likely CyberCartel payload

f6375a1f954f317e16f24c94507d4b04200c63b9 - SHA1 hash - Likely CyberCartel payload

252efff7f54bd19a5c96bbce0bfaeeecadb3752f - SHA1 hash - Likely CyberCartel payload

8080c94e5add2f6ed20e9866a00f67996f0a61ae - SHA1 hash - Likely CyberCartel payload

c5117cedc275c9d403a533617117be7200a2ed77 - SHA1 hash - Possible CyberCartel payload

19dd866abdaf8bc3c518d1c1166fbf279787fc03 - SHA1 hash - Likely CyberCartel payload

548287c0350d6e3d0e5144e20d0f0ce28661f514 - SHA1 hash - Likely CyberCartel payload

f0478e88c8eefc3fd0a8e01eaeb2704a580f88e6 - SHA1 hash - Possible CyberCartel payload

a9809acef61ca173331e41b28d6abddb64c5f192 - SHA1 hash - Likely CyberCartel payload

be96ec94f8f143127962d7bf4131c228474cd6ac - SHA1 hash -Likely CyberCartel payload

44ef336395c41bf0cecae8b43be59170bed6759d - SHA1 hash - Possible CyberCartel payload

facturmx[.]info - Hostname - Likely CyberCartel infection source

consultar-rfc[.]online - Hostname - Possible CyberCartel infection source

srlxlpdfmxntetflx[.]com - Hostname - Likely CyberCartel infection source

facturmx[.]online - Hostname - Possible CyberCartel infection source

rfcconhomoclave[.]mx - Hostname - Possible CyberCartel infection source

situacionfiscal[.]online - Hostname - Likely CyberCartel infection source

descargafactura[.]club - Hostname - Likely CyberCartel infection source

104.156.149[.]33 - IP - Likely CyberCartel C2 endpoint

172.86.68[.]194 - IP - Likely CyberCartel C2 endpoint

139.162.73[.]58 - IP - Likely CyberCartel C2 endpoint

172.105.24[.]190 - IP - Possible CyberCartel C2 endpoint

MITRE ATT&CK Mapping

Tactic - Technique

Command and Control - Ingress Tool Transfer (T1105)

Command and Control - Web Protocols (T1071.001)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

July 9, 2025

Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace

fingerprintDefault blog imageDefault blog image

Real-world intrusions across Azure and AWS

As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.

This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.

  1. The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
  2. The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.

Case 1 - Microsoft Azure

Simplified timeline of the attack on a customer’s Azure environment.
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.

In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.

Initial access

In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.

With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.

Detection and investigation of the threat

Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.

Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.

Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.

“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.

Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.

Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.

Persistence

Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.

Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.

The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.

Case 2 – Amazon Web Services

Simplified timeline of the attack on a customer’s AWS environment
Figure 5: Simplified timeline of the attack on a customer’s AWS environment

In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.

How the attacker gained access

The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.

Darktrace alerting to malicious activity

This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.

The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.

Internal reconnaissance

Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.

The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.

Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.

Darktrace’s Autonomous Response

In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.

This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.

Continued reconissance

Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.

The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.

Lateral movement attempts via RDP connections

Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.

This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.

Suspicious outbound SSH communication to known threat infrastructure

Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.

Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].

Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.

The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.

Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.

Final containment and collaborative response

Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.

As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.

Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.

Simplified timeline of the attack
Figure 8: Simplified timeline of the attack

Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.

Initial access

On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) network via a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.

The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).

Lateral movement and exfiltration

Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.  

The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.

Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.

The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).

What Darktrace detected

Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.

This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.

Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.

Conclusion

This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.

The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.

The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.

Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)

References

[1] https://www.virustotal.com/gui/ip-address/67.217.57.252/community

Case 1

Darktrace / IDENTITY model alerts

IaaS / Compliance / Uncommon Azure External User Invite

SaaS / Resource / Repeated Unusual SaaS Resource Creation

IaaS / Compute / Azure Compute Resource Update

Cyber AI Analyst incidents

Possible Unsecured AzureActiveDirectory Resource

Possible Hijack of Office365 Account

Case 2

Darktrace / NETWORK model alerts

Compromise / SSH Beacon

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious SMB Scanning Activity

Device / SMB Lateral Movement

Compliance / SSH to Rare External Destination

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Anomalous Connection / SMB Enumeration

Device / New or Uncommon SMB Named Pipe Device / Network Scan

Device / Suspicious Network Scan Activity

Device / New Device with Attack Tools

Device / RDP Scan Device / Attack and Recon Tools

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compromise / Large Number of Suspicious Successful Connections

Device / Large Number of Model Alerts

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Connections

Device / Anomalous RDP Followed By Multiple Model Alerts

Unusual Activity / Unusual External Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Darktrace / Autonomous Response model alerts

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Manual / Quarantine Device

Antigena / MDR / MDR-Quarantined Device

Antigena / MDR / Model Alert on MDR-Actioned Device

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Cyber AI Analyst incidents

Possible Application Layer Reconnaissance Activity

Scanning of Multiple Devices

Unusual Repeated Connections

Unusual External Data Transfer

Case 3

Darktrace / NETWORK model alerts

Unusual Activity / Unusual Large Internal Transfer

Compliance / Incoming Remote Desktop

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Remote Desktop

Anomalous Connection / Unusual Incoming Data Volume

Anomalous Server Activity / Domain Controller Initiated to Client

Device / Large Number of Model Alerts

Anomalous Connection / Possible Flow Device Brute Force

Device / RDP Scan

Device / Suspicious Network Scan Activity

Device / Network Scan

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / Unusual External Activity

Anomalous Connection / Uncommon 1 GiB Outbound

Device / Increased External Connectivity

Compromise / Large Number of Suspicious Successful Connections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Low and Slow Exfiltration to IP

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External UDP Port

Anomalous Connection / Possible Data Staging and External Upload

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Alerts from Critical Network Device

Compliance / External Windows Communications

Anomalous Connection / Unusual Internal Connections

Cyber AI Analyst incidents

Scanning of Multiple Devices

Extensive Unusual RDP Connections

MITRE ATT&CK mapping

(Technique name – Tactic ID)

Case 1

Defense Evasion - Modify Cloud Compute Infrastructure: Create Cloud Instance

Persistence – Account Manipulation

Case 2

Initial Access - External Remote Services

Execution - Inter-Process Communication

Persistence - External Remote Services

Discovery - System Network Connections Discovery

Discovery - Network Service Discovery

Discovery - Network Share Discovery

Lateral Movement - Remote Desktop Protocol

Lateral Movement - Remote Services: SMB/Windows Admin Shares

Collection - Data from Network Shared Drive

Command and Control - Protocol Tunneling

Exfiltration - Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

Case 3

Initial Access - Exploit Public-Facing Application

Discovery - Remote System Discovery

Discovery - Network Service Discovery

Lateral Movement - Remote Services

Lateral Movement - Remote Desktop Protocol  

Collection - Data from Network Shared Drive

Collection - Data Staged: Remote Data Staging

Exfiltration - Exfiltration Over C2 Channel

Command and Control - Non-Standard Port

Command and Control – Web Service

Impact - Data Encrypted for Impact

List of IoCs

IoC         Type      Description + Probability

193.242.184[.]178 - IP Address - Possible Exfiltration Server  

45.32.205[.]52  - IP Address  - Possible C2 Infrastructure

45.32.90[.]176 - IP Address - Possible C2 Infrastructure

207.246.74[.]166 - IP Address - Likely C2 Infrastructure

67.217.57[.]252 - IP Address - Likely C2 Infrastructure

23.150.248[.]189 - IP Address - Possible Exfiltration Server

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

Identity

/

July 8, 2025

Top Eight Threats to SaaS Security and How to Combat Them

login screen for mutli factor authentication Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI