Blog
/
Network
/
January 8, 2024

Uncovering CyberCartel Threats in Latin America

Examine the growing threat of cyber cartels in Latin America and learn how to safeguard against their attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Jan 2024

Introduction

In September 2023, Darktrace published its first Half-Year Threat Report, highlighting Threat Research, Security Operation Center (SOC), model breach, and Cyber AI Analyst analysis and trends across the Darktrace customer fleet. According to Darktrace’s Threat Report, the most observed threat type to affect Darktrace customers during the first half of 2023 was Malware-as-a-Service (Maas). The report highlighted a growing trend where malware strains, specifically in the MaaS ecosystem, “use cross-functional components from other strains as part of their evolution and customization” [1].  

Darktrace’s Threat Research team assessed this ‘Frankenstein’ approach would very likely increase, as shown by the fact that indicators of compromise (IoCs) are becoming “less and less mutually exclusive between malware strains as compromised infrastructure is used by multiple threat actors through access brokers or the “as-a-Service” market” [1].

Darktrace investigated one such threat during the last months of summer 2023, eventually leading to the discovery of CyberCartel-related activity across a significant number of Darktrace customers, especially in Latin America.

CyberCartel Overview and Darktrace Coverage

During a threat hunt, Darktrace’s Threat Research team discovered the download of a binary with a unique Uniform Resource Identifier (URI) pattern. When examining Darktrace’s customer base, it was discovered that binaries with this same URI pattern had been downloaded by a significant number of customer accounts, especially by customers based in Latin America. Although not identical, the targets and tactics, techniques, and procedures (TTPs) resembled those mentioned in an article regarding a botnet called Fenix [2], particularly active in Latin America.

During the Threat Research team’s investigation, nearly 40 potentially affected customer accounts were identified. Darktrace’s global Threat Research team investigates pervasive threats across Darktrace’s customer base daily. This cross-fleet research is based on Darktrace’s anomaly-based detection capability, Darktrace DETECT™, and revolves around technical analysis and contextualization of detection information.

Amid the investigation, further open-source intelligence (OSINT) research revealed that most indicators observed during Darktrace’s investigations were associated to a Latin American threat group named CyberCartel, with a small number of IoCs being associated with the Fenix botnet. While CyberCartel seems to have been active since 2012 and relies on MaaS offerings from well-known malware families, Fenix botnet was allegedly created at the end of last year and “specifically targets users accessing government services, particularly tax-paying individuals in Mexico and Chile” [2].

Both groups share similar targets and TTPs, as well as objectives: installing malware with information-stealing capabilities. In the case of Fenix infections, the compromised device will be added to a botnet and execute tasks given by the attacker(s); while in the case of CyberCartel, it can lead to various types of second-stage info-stealing and Man-in-the-Browser capabilities, including retrieving system information from the compromised device, capturing screenshots of the active browsing tab, and redirecting the user to fraudulent websites such as fake banking sites. According to a report by Metabase Q [2], both groups possibly share command and control (C2) infrastructure, making accurate attribution and assessment of the confidence level for which group was affecting the customer base extremely difficult. Indeed, one of the C2 IPs (104.156.149[.]33) observed on nearly 20 customer accounts during the investigation had OSINT evidence linking it to both CyberCartel and Fenix, as well as another group known to target Mexico called Manipulated Caiman [3] [4] [5].

CyberCartel and Fenix both appear to target banking and governmental services’ users based in Latin America, especially individuals from Mexico and Chile. Target institutions purportedly include tax administration services and several banks operating in the region. Malvertising and phishing campaigns direct users to pages imitating the target institutions’ webpages and prompt the download of a compressed file advertised in a pop-up window. This file claims enhance the user’s security and privacy while navigating the webpage but instead redirects the user to a compromised website hosting a zip file, which itself contains a URL file containing instructions for retrieval of the first stage payload from a remote server.

pop-up window with malicious file
Figure 1: Example of a pop-up window asking the user to download a compressed file allegedly needed to continue navigating the portal. Connections to the domain srlxlpdfmxntetflx[.]com were observed in one account investigated by Darktrace

During their investigations, the Threat Research team observed connections to 100% rare domains (e.g., situacionfiscal[.]online, consultar-rfc[.]online, facturmx[.]info), many of them containing strings such as “mx”, “rcf” and “factur” in their domain names, prior to the downloads of files with the unique URI pattern identified during the aforementioned threat hunting session.

The reference to “rfc” is likely a reference to the Registro Federal de Contribuyentes, a unique registration number issued by Mexico’s tax collection agency, Servicio de Administración Tributaria (SAT). These domains were observed as being 100% rare for the environment and were connected to a few minutes prior to connections to CyberCartel endpoints. Most of the endpoints were newly registered, with creation dates starting from only a few months earlier in the first half of 2023. Interestingly, some of these domains were very similar to legitimate government websites, likely a tactic employed by threat actors to convince users to trust the domains and to bypass security measures.

Figure 2: Screenshot from similarweb[.]com showing the degree of affinity between malicious domains situacionfiscal[.]online and facturmx[.]info and the legitimate Mexican government hostname sat[.]gob[.]mx
Figure 3: Screenshot of the likely source infection website facturmx[.]info taken when visited in a sandbox environment

In other customer networks, connections to mail clients were observed, as well as connections to win-rar[.]com, suggesting an interaction with a compressed file. Connections to legitimate government websites were also detected around the same time in some accounts. Shortly after, the infected devices were detected connecting to 100% rare IP addresses over the HTTP protocol using WebDAV user agents such as Microsoft-WebDAV-MiniRedir/10.0.X and DavCInt. Web Distributed Authoring and Versioning, in its full form, is a legitimate extension to the HTTP protocol that allows users to remotely share, copy, move and edit files hosted on a web server. Both CyberCartel and Fenix botnet reportedly abuse this protocol to retrieve the initial payload via a shortcut link. The use (or abuse) of this protocol allows attackers to evade blocklists and streamline payload distribution. In cases investigated by Darktrace, the use of this protocol was not always considered unusual for the breach device, indicating it also was commonly used for its legitimate purposes.

HTTP methods observed included PROPFIND, GET, and OPTIONS, where a higher proportion of PROPFIND requests were observed. PROPFIND is an HTTP method related to the use of WebDAV that retrieves properties in an exactly defined, machine-readable, XML document (GET responses do not have a define format). Properties are pieces of data that describe the state of a resource, i.e., data about data [7]. They are used in distributed authoring environments to provide for efficient discovery and management of resources.  

Figure 4: Device event log showing a connection to facturmx[.]info followed by a WebDAV connection to the 100% rare IP 172.86.68[.]104

In a number of cases, connections to compromised endpoints were followed by the download of one or more executable files with names following the regex pattern /(yes|4496|[A-Za-z]{8})/(((4496|4545)[A-Za-z]{24})|Herramienta_de_Seguridad_SII).(exe|jse), for example 4496UCJlcqwxvkpXKguWNqNWDivM.exe. PROPFIND and GET HTTP requests for dynamic-link library (DLL) files such as urlmon.dll and netutils.dll were also detected. These are legitimate Windows files that are essential to handle network and internet-related tasks in Windows. Irrespective of whether they had malicious or legitimate signatures, Darktrace DETECT was able to recognize that the download of these files was suspicious with rare external endpoints not previously observed on the respective customer networks.

Figure 5: Advanced Search results showing some of the HTTP requests made by the breach device to a CyberCartel endpoint via PROPFIND, GET, or OPTIONS methods for executable and DLL files

Following Darktrace DETECT’s model breaches, these HTTP connections were investigated by Cyber AI Analyst™. AI Analyst provided a summary and further technical details of these connections, as shown in figure 6.

Figure 6: Cyber AI Analyst incident showing a summary of the event, as well as technical details. The AI investigation process is also detailed

AI Analyst searched for all HTTP connections made by the breach device and found more than 2,500 requests to more than a hundred endpoints for one given device. It then looked for the user agents responsible for these connections and found 15 possible software agents responsible for the HTTP requests, and from these identified a single suspicious software agent, Microsoft-WebDAV-Min-Redir. As mentioned previously, this is a legitimate software, but its use by the breach device was considered unusual by Darktrace’s machine learning technology. By performing analysis on thousands of connections to hundreds of endpoints at machine speed, AI Analyst is able to perform the heavy lifting on behalf of human security teams and then collate its findings in a single summary pane, giving end-users the information needed to assess a given activity and quickly start remediation as needed. This allows security teams and administrators to save precious time and provides unparalleled visibility over any potentially malicious activity on their network.

Following the successful identification of CyberCartel activity by DETECT, Darktrace RESPOND™ is then able to contain suspicious behavior, such as by restricting outgoing traffic or enforcing normal patterns of life on affected devices. This would allow customer security teams extra time to analyze potentially malicious behavior, while leaving the rest of the network free to perform business critical operations. Unfortunately, in the cases of CyberCartel compromises detected by Darktrace, RESPOND was not enabled in autonomous response mode meaning preventative actions had to be applied manually by the customer’s security team after the fact.

Figure 7. Device event log showing connections to 100% rare CyberCartel endpoint 172.86.68[.]194 and subsequent suggested RESPOND actions.

Conclusion

Threat actors targeting high-value entities such as government offices and banks is unfortunately all too commonplace.  In the case of Cyber Cartel, governmental organizations and entities, as well as multiple newspapers in the Latin America, have cautioned users against these malicious campaigns, which have occurred over the past few years [8] [9]. However, attackers continuously update their toolsets and infrastructure, quickly rendering these warnings and known-bad security precautions obsolete. In the case of CyberCartel, the abuse of the legitimate WebDAV protocol to retrieve the initial payload is just one example of this. This method of distribution has also been leveraged by in Bumblebee malware loader’s latest campaign [10]. The abuse of the legitimate WebDAV protocol to retrieve the initial CyberCartel payload outlined in this case is one example among many of threat actors adopting new distribution methods used by others to further their ends.

As threat actors continue to search for new ways of remaining undetected, notably by incorporating legitimate processes into their attack flow and utilizing non-exclusive compromised infrastructure, it is more important than ever to have an understanding of normal network operation in order to detect anomalies that are indicative of an ongoing compromise. Darktrace’s suite of products, including DETECT+RESPOND, is well placed to do just that, with machine-speed analysis, detection, and response helping security teams and administrators keep their digital environments safe from malicious actors.

Credit to: Nahisha Nobregas, SOC Analyst

References

[1] https://darktrace.com/blog/darktrace-half-year-threat-report

[2] https://www.metabaseq.com/fenix-botnet/

[3] https://perception-point.io/blog/manipulated-caiman-the-sophisticated-snare-of-mexicos-banking-predators-technical-edition/

[4] https://www.virustotal.com/gui/ip-address/104.156.149.33/community

[5] https://silent4business.com/tendencias/1

[6] https://www.metabaseq.com/cybercartel/

[7] http://www.webdav.org/specs/rfc2518.html#rfc.section.4.1

[8] https://www.csirt.gob.cl/alertas/8ffr23-01415-01/

[9] https://www.gob.mx/sat/acciones-y-programas/sitios-web-falsos

[10] https://www.bleepingcomputer.com/news/security/bumblebee-malware-returns-in-new-attacks-abusing-webdav-folders/

Appendices  

Darktrace DETECT Model Detections

AI Analyst Incidents:

• Possible HTTP Command and Control

• Suspicious File Download

Model Detections:

• Anomalous Connection / New User Agent to IP Without Hostname

• Device / New User Agent and New IP

• Anomalous File / EXE from Rare External Location

• Multiple EXE from Rare External Locations

• Anomalous File / Script from Rare External Location

List of IoCs

IoC - Type - Description + Confidence

f84bb51de50f19ec803b484311053294fbb3b523 - SHA1 hash - Likely CyberCartel Payload IoCs

4eb564b84aac7a5a898af59ee27b1cb00c99a53d - SHA1 hash - Likely CyberCartel payload

8806639a781d0f63549711d3af0f937ffc87585c - SHA1 hash - Likely CyberCartel payload

9d58441d9d31b5c4011b99482afa210b030ecac4 - SHA1 hash - Possible CyberCartel payload

37da048533548c0ad87881e120b8cf2a77528413 - SHA1 hash - Likely CyberCartel payload

2415fcefaf86a83f1174fa50444be7ea830bb4d1 - SHA1 hash - Likely CyberCartel payload

15a94c7e9b356d0ff3bcee0f0ad885b6cf9c1bb7 - SHA1 hash - Likely CyberCartel payload

cdc5da48fca92329927d9dccf3ed513dd28956af - SHA1 hash - Possible CyberCartel payload

693b869bc9ba78d4f8d415eb7016c566ead839f3 - SHA1 hash - Likely CyberCartel payload

04ce764723eaa75e4ee36b3d5cba77a105383dc5 - SHA1 hash - Possible CyberCartel payload

435834167fd5092905ee084038eee54797f4d23e - SHA1 hash - Possible CyberCartel payload

3341b4f46c2f45b87f95168893a7485e35f825fe - SHA1 hash - Likely CyberCartel payload

f6375a1f954f317e16f24c94507d4b04200c63b9 - SHA1 hash - Likely CyberCartel payload

252efff7f54bd19a5c96bbce0bfaeeecadb3752f - SHA1 hash - Likely CyberCartel payload

8080c94e5add2f6ed20e9866a00f67996f0a61ae - SHA1 hash - Likely CyberCartel payload

c5117cedc275c9d403a533617117be7200a2ed77 - SHA1 hash - Possible CyberCartel payload

19dd866abdaf8bc3c518d1c1166fbf279787fc03 - SHA1 hash - Likely CyberCartel payload

548287c0350d6e3d0e5144e20d0f0ce28661f514 - SHA1 hash - Likely CyberCartel payload

f0478e88c8eefc3fd0a8e01eaeb2704a580f88e6 - SHA1 hash - Possible CyberCartel payload

a9809acef61ca173331e41b28d6abddb64c5f192 - SHA1 hash - Likely CyberCartel payload

be96ec94f8f143127962d7bf4131c228474cd6ac - SHA1 hash -Likely CyberCartel payload

44ef336395c41bf0cecae8b43be59170bed6759d - SHA1 hash - Possible CyberCartel payload

facturmx[.]info - Hostname - Likely CyberCartel infection source

consultar-rfc[.]online - Hostname - Possible CyberCartel infection source

srlxlpdfmxntetflx[.]com - Hostname - Likely CyberCartel infection source

facturmx[.]online - Hostname - Possible CyberCartel infection source

rfcconhomoclave[.]mx - Hostname - Possible CyberCartel infection source

situacionfiscal[.]online - Hostname - Likely CyberCartel infection source

descargafactura[.]club - Hostname - Likely CyberCartel infection source

104.156.149[.]33 - IP - Likely CyberCartel C2 endpoint

172.86.68[.]194 - IP - Likely CyberCartel C2 endpoint

139.162.73[.]58 - IP - Likely CyberCartel C2 endpoint

172.105.24[.]190 - IP - Possible CyberCartel C2 endpoint

MITRE ATT&CK Mapping

Tactic - Technique

Command and Control - Ingress Tool Transfer (T1105)

Command and Control - Web Protocols (T1071.001)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

October 14, 2025

Inside Akira’s SonicWall Campaign: Darktrace’s Detection and Response

akira sonicwallDefault blog imageDefault blog image

Introduction: Background on Akira SonicWall campaign

Between July and August 2025, security teams worldwide observed a surge in Akira ransomware incidents involving SonicWall SSL VPN devices [1]. Initially believed to be the result of an unknown zero-day vulnerability, SonicWall later released an advisory announcing that the activity was strongly linked to a previously disclosed vulnerability, CVE-2024-40766, first identified over a year earlier [2].

On August 20, 2025, Darktrace observed unusual activity on the network of a customer in the US. Darktrace detected a range of suspicious activity, including network scanning and reconnaissance, lateral movement, privilege escalation, and data exfiltration. One of the compromised devices was later identified as a SonicWall virtual private network (VPN) server, suggesting that the incident was part of the broader Akira ransomware campaign targeting SonicWall technology.

As the customer was subscribed to the Managed Detection and Response (MDR) service, Darktrace’s Security Operations Centre (SOC) team was able to rapidly triage critical alerts, restrict the activity of affected devices, and notify the customer of the threat. As a result, the impact of the attack was limited - approximately 2 GiB of data had been observed leaving the network, but any further escalation of malicious activity was stopped.

Threat Overview

CVE-2024-40766 and other misconfigurations

CVE-2024-40766 is an improper access control vulnerability in SonicWall’s SonicOS, affecting Gen 5, Gen 6, and Gen 7 devices running SonicOS version 7.0.1 5035 and earlier [3]. The vulnerability was disclosed on August 23, 2024, with a patch released the same day. Shortly after, it was reported to be exploited in the wild by Akira ransomware affiliates and others [4].

Almost a year later, the same vulnerability is being actively targeted again by the Akira ransomware group. In addition to exploiting unpatched devices affected by CVE-2024-40766, security researchers have identified three other risks potentially being leveraged by the group [5]:

*The Virtual Office Portal can be used to initially set up MFA/TOTP configurations for SSLVPN users.

Thus, even if SonicWall devices were patched, threat actors could still target them for initial access by reusing previously stolen credentials and exploiting other misconfigurations.

Akira Ransomware

Akira ransomware was first observed in the wild in March 2023 and has since become one of the most prolific ransomware strains across the threat landscape [6]. The group operates under a Ransomware-as-a-Service (RaaS) model and frequently uses double extortion tactics, pressuring victims to pay not only to decrypt files but also to prevent the public release of sensitive exfiltrated data.

The ransomware initially targeted Windows systems, but a Linux variant was later observed targeting VMware ESXi virtual machines [7]. In 2024, it was assessed that Akira would continue to target ESXi hypervisors, making attacks highly disruptive due to the central role of virtualisation in large-scale cloud deployments. Encrypting the ESXi file system enables rapid and widespread encryption with minimal lateral movement or credential theft. The lack of comprehensive security protections on many ESXi hypervisors also makes them an attractive target for ransomware operators [8].

Victimology

Akira is known to target organizations across multiple sectors, most notably those in manufacturing, education, and healthcare. These targets span multiple geographic regions, including North America, Latin America, Europe and Asia-Pacific [9].

Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].
Figure 1: Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].

Common Tactics, Techniques and Procedures (TTPs) [7][10]

Initial Access
Targets remote access services such as RDP and VPN through vulnerability exploitation or stolen credentials.

Reconnaissance
Uses network scanning tools like SoftPerfect and Advanced IP Scanner to map the environment and identify targets.

Lateral Movement
Moves laterally using legitimate administrative tools, typically via RDP.

Persistence
Employs techniques such as Kerberoasting and pass-the-hash, and tools like Mimikatz to extract credentials. Known to create new domain accounts to maintain access.

Command and Control
Utilizes remote access tools including AnyDesk, RustDesk, Ngrok, and Cloudflare Tunnel.

Exfiltration
Uses tools such as FileZilla, WinRAR, WinSCP, and Rclone. Data is exfiltrated via protocols like FTP and SFTP, or through cloud storage services such as Mega.

Darktrace’s Coverage of Akira ransomware

Reconnaissance

Darktrace first detected of unusual network activity around 05:10 UTC, when a desktop device was observed performing a network scan and making an unusual number of DCE-RPC requests to the endpoint mapper (epmapper) service. Network scans are typically used to identify open ports, while querying the epmapper service can reveal exposed RPC services on the network.

Multiple other devices were also later seen with similar reconnaissance activity, and use of the Advanced IP Scanner tool, indicated by connections to the domain advanced-ip-scanner[.]com.

Lateral movement

Shortly after the initial reconnaissance, the same desktop device exhibited unusual use of administrative tools. Darktrace observed the user agent “Ruby WinRM Client” and the URI “/wsman” as the device initiated a rare outbound Windows Remote Management (WinRM) connection to two domain controllers (REDACTED-dc1 and REDACTED-dc2). WinRM is a Microsoft service that uses the WS-Management (WSMan) protocol to enable remote management and control of network devices.

Darktrace also observed the desktop device connecting to an ESXi device (REDACTED-esxi1) via RDP using an LDAP service credential, likely with administrative privileges.

Credential access

At around 06:26 UTC, the desktop device was seen fetching an Active Directory certificate from the domain controller (REDACTED-dc1) by making a DCE-RPC request to the ICertPassage service. Shortly after, the device made a Kerberos login using the administrative credential.

Figure 3: Darktrace’s detection of the of anomalous certificate download and subsequent Kerberos login.

Further investigation into the device’s event logs revealed a chain of connections that Darktrace’s researchers believe demonstrates a credential access technique known as “UnPAC the hash.”

This method begins with pre-authentication using Kerberos’ Public Key Cryptography for Initial Authentication (PKINIT), allowing the client to use an X.509 certificate to obtain a Ticket Granting Ticket (TGT) from the Key Distribution Center (KDC) instead of a password.

The next stage involves User-to-User (U2U) authentication when requesting a Service Ticket (ST) from the KDC. Within Darktrace's visibility of this traffic, U2U was indicated by the client and service principal names within the ST request being identical. Because PKINIT was used earlier, the returned ST contains the NTLM hash of the credential, which can then be extracted and abused for lateral movement or privilege escalation [11].

Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12].
Figure 4: Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12]
Figure 5: Device event log showing the Kerberos Login and Kerberos Ticket events

Analysis of the desktop device’s event logs revealed a repeated sequence of suspicious activity across multiple credentials. Each sequence included a DCE-RPC ICertPassage request to download a certificate, followed by a Kerberos login event indicating PKINIT pre-authentication, and then a Kerberos ticket event consistent with User-to-User (U2U) authentication.

Darktrace identified this pattern as highly unusual. Cyber AI Analyst determined that the device used at least 15 different credentials for Kerberos logins over the course of the attack.

By compromising multiple credentials, the threat actor likely aimed to escalate privileges and facilitate further malicious activity, including lateral movement. One of the credentials obtained via the “UnPAC the hash” technique was later observed being used in an RDP session to the domain controller (REDACTED-dc2).

C2 / Additional tooling

At 06:44 UTC, the domain controller (REDACTED-dc2) was observed initiating a connection to temp[.]sh, a temporary cloud hosting service. Open-source intelligence (OSINT) reporting indicates that this service is commonly used by threat actors to host and distribute malicious payloads, including ransomware [13].

Shortly afterward, the ESXi device was observed downloading an executable named “vmwaretools” from the rare external endpoint 137.184.243[.]69, using the user agent “Wget.” The repeated outbound connections to this IP suggest potential command-and-control (C2) activity.

Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Figure 6: Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.
Figure 7: Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.

Data exfiltration

The first signs of data exfiltration were observed at around 7:00 UTC. Both the domain controller (REDACTED-dc2) and a likely SonicWall VPN device were seen uploading approximately 2 GB of data via SSH to the rare external endpoint 66.165.243[.]39 (AS29802 HVC-AS). OSINT sources have since identified this IP as an indicator of compromise (IoC) associated with the Akira ransomware group, known to use it for data exfiltration [14].

Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.
Figure 8: Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.

Cyber AI Analyst

Throughout the course of the attack, Darktrace’s Cyber AI Analyst autonomously investigated the anomalous activity as it unfolded and correlated related events into a single, cohesive incident. Rather than treating each alert as isolated, Cyber AI Analyst linked them together to reveal the broader narrative of compromise. This holistic view enabled the customer to understand the full scope of the attack, including all associated activities and affected assets that might otherwise have been dismissed as unrelated.

Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.
Figure 9: Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.

Containing the attack

In response to the multiple anomalous activities observed across the network, Darktrace's Autonomous Response initiated targeted mitigation actions to contain the attack. These included:

  • Blocking connections to known malicious or rare external endpoints, such as 137.184.243[.]69, 66.165.243[.]39, and advanced-ip-scanner[.]com.
  • Blocking internal traffic to sensitive ports, including 88 (Kerberos), 3389 (RDP), and 49339 (DCE-RPC), to disrupt lateral movement and credential abuse.
  • Enforcing a block on all outgoing connections from affected devices to contain potential data exfiltration and C2 activity.
Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.
Figure 10: Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.

Managed Detection and Response

As this customer was an MDR subscriber, multiple Enhanced Monitoring alerts—high-fidelity models designed to detect activity indicative of compromise—were triggered across the network. These alerts prompted immediate investigation by Darktrace’s SOC team.

Upon determining that the activity was likely linked to an Akira ransomware attack, Darktrace analysts swiftly acted to contain the threat. At around 08:05 UTC, devices suspected of being compromised were quarantined, and the customer was promptly notified, enabling them to begin their own remediation procedures without delay.

A wider campaign?

Darktrace’s SOC and Threat Research teams identified at least three additional incidents likely linked to the same campaign. All targeted organizations were based in the US, spanning various industries, and each have indications of using SonicWall VPN, indicating it had likely been targeted for initial access.

Across these incidents, similar patterns emerged. In each case, a suspicious executable named “vmwaretools” was downloaded from the endpoint 85.239.52[.]96 using the user agent “Wget”, bearing some resemblance to the file downloads seen in the incident described here. Data exfiltration was also observed via SSH to the endpoints 107.155.69[.]42 and 107.155.93[.]154, both of which belong to the same ASN also seen in the incident described in this blog: S29802 HVC-AS. Notably, 107.155.93[.]154 has been reported in OSINT as an indicator associated with Akira ransomware activity [15]. Further recent Akira ransomware cases have been observed involving SonicWall VPN, where no similar executable file downloads were observed, but SSH exfiltration to the same ASN was. These overlapping and non-overlapping TTPs may reflect the blurring lines between different affiliates operating under the same RaaS.

Lessons from the campaign

This campaign by Akira ransomware actors underscores the critical importance of maintaining up-to-date patching practices. Threat actors continue to exploit previously disclosed vulnerabilities, not just zero-days, highlighting the need for ongoing vigilance even after patches are released. It also demonstrates how misconfigurations and overlooked weaknesses can be leveraged for initial access or privilege escalation, even in otherwise well-maintained environments.

Darktrace’s observations further reveal that ransomware actors are increasingly relying on legitimate administrative tools, such as WinRM, to blend in with normal network activity and evade detection. In addition to previously documented Kerberos-based credential access techniques like Kerberoasting and pass-the-hash, this campaign featured the use of UnPAC the hash to extract NTLM hashes via PKINIT and U2U authentication for lateral movement or privilege escalation.

Credit to Emily Megan Lim (Senior Cyber Analyst), Vivek Rajan (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), and Sam Lister (Specialist Security Researcher)

Appendices

Darktrace Model Detections

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Possible Data Staging and External Upload

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Incoming Long Remote Desktop Session

Anomalous Connection / Unusual Incoming Long SSH Session

Anomalous Connection / Unusual Long SSH Session

Anomalous File / EXE from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Compliance / Default Credential Usage

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compliance / SSH to Rare External Destination

Compromise / Large Number of Suspicious Successful Connections

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / Anomalous Certificate Download Activity

Device / Anomalous SSH Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Large Number of Model Alerts

Device / Network Range Scan

Device / Network Scan

Device / New User Agent To Internal Server

Device / Possible SMB/NTLM Brute Force

Device / Possible SMB/NTLM Reconnaissance

Device / RDP Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / UDP Enumeration

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

User / Multiple Uncommon New Credentials on Device

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Enhanced Monitoring Models

Compromise / Anomalous Certificate Download and Kerberos Login

Device / Initial Attack Chain Activity

Device / Large Number of Model Alerts from Critical Network Device

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious Network Scan Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Antigena/Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Manual / Quarantine Device

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Alerts

List of Indicators of Compromise (IoCs)

·      66.165.243[.]39 – IP Address – Data exfiltration endpoint

·      107.155.69[.]42 – IP Address – Probable data exfiltration endpoint

·      107.155.93[.]154 – IP Address – Likely Data exfiltration endpoint

·      137.184.126[.]86 – IP Address – Possible C2 endpoint

·      85.239.52[.]96 – IP Address – Likely C2 endpoint

·      hxxp://85.239.52[.]96:8000/vmwarecli  – URL – File download

·      hxxp://137.184.126[.]86:8080/vmwaretools – URL – File download

MITRE ATT&CK Mapping

Initial Access – T1190 – Exploit Public-Facing Application

Reconnaissance – T1590.002 – Gather Victim Network Information: DNS

Reconnaissance – T1590.005 – Gather Victim Network Information: IP Addresses

Reconnaissance – T1592.004 – Gather Victim Host Information: Client Configurations

Reconnaissance – T1595 – Active Scanning

Discovery – T1018 – Remote System Discovery

Discovery – T1046 – Network Service Discovery

Discovery – T1083 – File and Directory Discovery

Discovery – T1135 – Network Share Discovery

Lateral Movement – T1021.001 – Remote Services: Remote Desktop Protocol

Lateral Movement – T1021.004 – Remote Services: SSH

Lateral Movement – T1021.006 – Remote Services: Windows Remote Management

Lateral Movement – T1550.002 – Use Alternate Authentication Material: Pass the Hash

Lateral Movement – T1550.003 – Use Alternate Authentication Material: Pass the Ticket

Credential Access – T1110.001 – Brute Force: Password Guessing

Credential Access – T1649 – Steal or Forge Authentication Certificates

Persistence, Privilege Escalation – T1078 – Valid Accounts

Resource Development – T1588.001 – Obtain Capabilities: Malware

Command and Control – T1071.001 – Application Layer Protocol: Web Protocols

Command and Control – T1105 – Ingress Tool Transfer

Command and Control – T1573 – Encrypted Channel

Collection – T1074 – Data Staged

Exfiltration – T1041 – Exfiltration Over C2 Channel

Exfiltration – T1048 – Exfiltration Over Alternative Protocol

References

[1] https://thehackernews.com/2025/08/sonicwall-investigating-potential-ssl.html

[2] https://www.sonicwall.com/support/notices/gen-7-and-newer-sonicwall-firewalls-sslvpn-recent-threat-activity/250804095336430

[3] https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2024-0015

[4] https://arcticwolf.com/resources/blog/arctic-wolf-observes-akira-ransomware-campaign-targeting-sonicwall-sslvpn-accounts/

[5] https://www.rapid7.com/blog/post/dr-akira-ransomware-group-utilizing-sonicwall-devices-for-initial-access/

[6] https://www.ic3.gov/AnnualReport/Reports/2024_IC3Report.pdf

[7] https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-109a

[8] https://blog.talosintelligence.com/akira-ransomware-continues-to-evolve/

[9] https://www.ransomware.live/map?year=2025&q=akira

[10] https://attack.mitre.org/groups/G1024/
[11] https://labs.lares.com/fear-kerberos-pt2/#UNPAC

[12] https://www.thehacker.recipes/ad/movement/kerberos/unpac-the-hash

[13] https://www.s-rminform.com/latest-thinking/derailing-akira-cyber-threat-intelligence)

[14] https://fieldeffect.com/blog/update-akira-ransomware-group-targets-sonicwall-vpn-appliances

[15] https://arcticwolf.com/resources/blog/arctic-wolf-observes-july-2025-uptick-in-akira-ransomware-activity-targeting-sonicwall-ssl-vpn/

Continue reading
About the author
Emily Megan Lim
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI