Blog
/

Inside the SOC

/
September 13, 2022

Compliance Threat: RedLine Information Stealer

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2022
Darktrace reveals the compliance risks posed by the RedLine information stealer. Read about their analysis and how to defend against this cyber threat.

With the continued rise of malware as a service (MaaS), it is now easier than ever to find and deploy information stealers [1]. Given this, it is crucial that companies begin to prioritize good cyber hygiene, and address compliance issues within their environments. Thanks to MaaS, attackers with little to no experience can amplify what might seem like a low-risk attack, into a significant compromise. This blog will investigate a compromise that could have been mitigated with better cyber hygiene and enhanced awareness around compliance issues.

Figure 1: Timeline of the attack

In May 2022 Darktrace DETECT/Network identified a device linked with multiple compliance alerts for ‘torrent’ activity within a Latin American telecommunications company. This culminated in the device downloading a suspicious executable file from an archived webpage. At first, analysis of the downloaded file indicated that it could be a legitimate, albeit outdated software relevant to the client’s industry vertical (SNMPc management tool for GeoDesy GD-300). However, as this was the first event before further suspicious activities, it was also possible that the software downloaded was packaged with malware and marked an initial compromise. Since early April, the device had regularly breached compliance alerts for both BitTorrent and uTorrent (a BitTorrent client). These connections occurred over a common torrenting port, 6881, and may have represented the infection vector.  

Figure 2: View of archived webpage which the suspicious executable was downloaded from

Shortly after the executable was downloaded, Darktrace DETECT alerted a new outbound SSH connection with the following notice in Advanced Search: ‘SSH::Heuristic_Login_Success’. This was highlighted because the breach device did not commonly make connections over this protocol and the destination was a never-before-seen Bulgarian IP address (79.142.70[.]239). The connection lasted 4 minutes, and the device downloaded 31.36 MB of data. 

Following this, the breach device was seen making unusual HTTP connections to rare Russian and Danish endpoints using suspicious user agents. The Russian endpoint was noted for hosting a text file (‘incricinfo[.]com') that listed a single domain which was recently registered. The connections to the Danish endpoint were made to an IP with a URI that OSINT connected to the use of the BeamWinHTTP loader [2]. This loader can be used to download and execute other malware strains, in particular information stealers [3]. 

Figure 3: Screenshot of Russian endpoint with link to incricinfo[.]com 
Figure 4: Cyber AI Analyst highlighting the unusual HTTP connectivity that occurred prior to the multiple suspicious file downloads

At the same time as the connections with the unusual user agents, the device was also seen downloading an executable file from the endpoint, ‘Yuuichirou-hanma[.]s3[.]pl-waw[.]scw[.]cloud’. Analysis of the file indicated that it may be used to deploy further malware and potentially unwanted programs (PUPs). BeamWinHTTP also causes installation of these PUPs which helps to load more nefarious programs and spread compromise. 

This behavior was then seen as the device downloaded 5 different executable files from the endpoint, ‘hakhaulogistics[.]com’. This domain is linked to a Vietnamese logistics company that Darktrace had marked as new within the environment; it is possible that this domain was compromised and being used to host malicious infrastructure. At the point of compromise, several of the downloads were labeled as malicious by popular OSINT [4]. Additionally, at least one of the files was explicitly linked to the RedLine Information Stealer.  

Shortly after, the device made connections to a known Tor relay node. Tor is commonly used as an avenue for C2 communication as it offers a way for attackers to anonymize and obfuscate their activity. It was at this point that the first Proactive Threat Notification (PTN) for this activity occurred. This ensured immediate follow-up investigation from Darktrace SOC and a timeline of events and impacted devices were issued to the customer’s security team directly. 

Figure 5: Cyber AI Analyst highlighting the unusual executable downloads as well as the subsequent Tor connections. The file poweroff[.]exe has been highlighted by several OSINT sources as being potentially malicious

By this point, Darktrace had identified a large volume of unusual outbound HTTP POSTs to a variety of endpoints that seemed to have no obvious function or service. Following these POST requests, the compromised device was seen initiating a long SSL connection to the domain, ‘www[.]qfhwji6fnpiad3gs[.]com’, which is likely to have be generated by an algorithm (DGA). Lastly, a little while after the SSL connections, the device was seen downloading another executable file from the Russian domain ‘test-hf[.]su’. Research on the file again suggested that it was associated with RedLine Stealer [5].  

Figure 6: AIA highlighting additional unusual HTTP connections that were linked with the numeric exe download

Dangers of Non-Compliance 

Whilst the RedLine compromise was a matter of customer concern, the gap in their security was not visibility but rather best practice. It is important to note that prior to these events, the device was commonly seen sending and receiving connections associated with torrenting. In the past it has been observed that RedLine Stealer masquerades as ‘cracked’ software (software that has had its copy protection removed) [6]. In this instance, the initial download of the false ‘SNMPc’ executable may have been proof of this behavior. 

This is a reminder that torrenting is also extremely popular as a peer-to-peer vector for transferring malicious files. Combined with the possibility of network throttling or unapproved VPN use, torrents are usually considered non-compliant within corporate settings. Whether the events here were kickstarted due to a user unwittingly downloading malicious software, or exposure to a malicious actor via BitTorrent use, both cases represent a user circumventing existing compliance controls or a lack of compliance control in general. It is important for organizations to make sure that their users are acting in ways that limit the company’s exposure to nefarious actors. Companies should routinely encourage proper cyber hygiene and implement access controls that block certain activities such as torrenting if threats like these are to be stopped in the future.  

Regardless of what users are doing, Darktrace is positioned to detect and take action on compliance breaches and activity resulting from lack of compliance. The variety of C2 domains used in this blog incident were too quick for most security tools to alert on or for human teams to triage. However, this was no problem for Cyber AI analyst, which was able to draw together aspects of the attack across the kill chain and save a significant amount of time for both the customer security team and Darktrace SOC analysts. If active, Darktrace RESPOND could have blocked activities like the initial BitTorrent connections and incoming download, but with the right preventative measures, it wouldn’t have to. Darktrace PREVENT works continuously to harden defenses and preempt attackers, closing any vulnerabilities before they can be exploited. This includes performing attack surface management, attack path modelling, and security awareness training. In this case, Darktrace PREVENT could have highlighted torrenting activity as part of a potentially harmful attack path and recommended the best actions to mitigate it.

‘No Prior Experience required’ 

In the past, only highly skilled attackers could create and use the tools needed to attack organizations. With Ransomware-as-a-Service (RaaS) proving highly profitable, however, it is no surprise that malware is also becoming a lucrative business. As SaaS can help legitimate companies with no development experience to use and maintain apps, MaaS can help attackers with little to no hacking experience compromise organizations and achieve their goals. RedLine Stealer is readily available, and not prohibitively expensive, meaning attacks can be carried out more frequently, and on a wider range of victims. The incident explored in this blog is proof of this, and a strong indication that security comes not only from strong visibility but also compliance and best practice too. With a powerful defensive tool like PREVENT, security teams can save time while feeling confident that they are keeping ahead of these aspects of security.

Thanks to Adam Stevens for his contributions to this blog.

Appendices

Darktrace Model Breaches

·      Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External 

·      Anomalous File / Numeric Exe Download

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Compliance / SSH to Rare External Destination

·      Compromise / Anomalous File then Tor 

·      Compromise / Possible Tor Usage 

·      Device / Initial Breach Chain Compromise

·      Device / Long Agent Connection to New Endpoint

References

[1] https://blog.sonicwall.com/en-us/2021/12/the-rise-and-growth-of-malware-as-a-service/

[2] https://asec.ahnlab.com/en/33679/  

[3] https://asec.ahnlab.com/en/20930/

[4] https://www.virustotal.com/gui/file/acfc06b4bcda03ecf4f9dc9b27c510b58ae3a6a9baf1ee821fc624467944467b & https://www.virustotal.com/gui/file/dad6311f96df65f40d9599c84907bae98306f902b1489b03768294b7678a5e79 

[5] https://www.virustotal.com/gui/file/ff7574f9f1d15594e409bee206f5db6c76db7c90dda2ae4f241b77cd0c7b6bf6

[6] https://asec.ahnlab.com/en/30445/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Steven Sosa
Analyst Team Lead
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 28, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI