Blog
/

Inside the SOC

/
May 23, 2023

Darktrace’s Detection of a Hive Ransomware-as-Service

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
May 2023
This blog investigates a new strain of ransomware, Hive, a ransomware-as-a-service. Darktrace was able to provide full visibility over the attacks.

Update: On January 26, 2023, the Hive ransomware group was dismantled and servers associated with the sale of the ransomware were taken offline following an investigation by the FBI, German law enforcement and the National Crime Agency (NCA). The activity detailed in this blog took place in 2022, whilst the group was still active.

RaaS in Cyber Security

The threat of ransomware continues to be a constant concern for security teams across the cyber threat landscape. With the growing popularity of Ransomware-as-a-Service (RaaS), it is becoming more and more accessible for even inexperienced would-be attackers. As a result of this low barrier to entry, the volume of ransomware attacks is expected to increase significantly.

What’s more, RaaS is a highly tailorable market in which buyers can choose from varied kits and features to use in their ransomware deployments meaning attacks will rarely behave the same. To effectively detect and safeguard against these differentiations, it is crucial to implement security measures that put the emphasis on detecting anomalies and focusing on deviations in expected behavior, rather than relying on depreciated indicators of compromise (IoC) lists or playbooks that focus on attack chains unable to keep pace with the increasing speed of ransomware evolution.

In early 2022, Darktrace DETECT/Network™ identified several instances of Hive ransomware on the networks of multiple customers. Using its anomaly-based detection, Darktrace was able to successfully detect the attacks and multiple stages of the kill chain, including command and control (C2) activity, lateral movement, data exfiltration, and ultimately data encryption and the writing of ransom notes.

Hive Ransomware 

Hive ransomware is a relatively new strain that was first observed in the wild in June 2021. It is known to target a variety of industries including healthcare, energy providers, and retailers, and has reportedly attacked over 1,500 organizations, collecting more than USD 100m in ransom payments [1].

Hive is distributed via a RaaS model where its developers update and maintain the code, in return for a percentage of the eventual ransom payment, while users (or affiliates) are given the tools to carry out attacks using a highly sophisticated and complex malware they would otherwise be unable to use. Hive uses typical tactics, techniques and procedures (TTPs) associated with ransomware, though they do vary depending on the Hive affiliate carrying out the attack.

In most cases a double extortion attack is carried out, whereby data is first exfiltrated and then encrypted before a ransom demand is made. This gives attackers extra leverage as victims are at risk of having their sensitive data leaked to the public on websites such as the ‘HiveLeaks’ TOR website.

Attack Timeline

Owing to the highly customizable nature of RaaS, the tactics and methods employed by Hive actors are expected to differ on a case-by-case basis. Nonetheless in the majority of Hive ransomware incidents identified on Darktrace customer environments, Darktrace DETECT observed the following general attack stages and features. This is possibly indicative of the attacks originating from the same threat actor(s) or from a widely sold batch with a particular configuration to a variety of actors.

Figure 1: A typical timeline of a Hive attack observed by Darktrace.

Initial Access 

Although Hive actors are known to gain initial access to networks through multiple different vectors, the two primary methods reported by security researchers are the exploitation of Microsoft Exchange vulnerabilities, or the distribution of phishing emails with malicious attachments [2][3].

In the early stages of one Hive ransomware attack observed on the network of a Darktrace customer, for example, Darktrace detected a device connecting to the rare external location 23.81.246[.]84, with a PowerShell user agent via HTTP. During this connection, the device attempted to download an executable file named “file.exe”. It is possible that the file was initially accessed and delivered via a phishing email; however, as Darktrace/Email was not enabled at the time of the attack, this was outside of Darktrace’s purview. Fortunately, the connection failed the proxy authentication was thus blocked as seen in the packet capture (PCAP) in Figure 2. 

Shortly after this attempted download, the same device started to receive a high volume of incoming SSL connections from a rare external endpoint, namely 146.70.87[.]132. Darktrace logged that this endpoint was using an SSL certificate signed by Go Daddy CA, an easily obtainable and accessible SSL certificate, and that the increase in incoming SSL connections from this endpoint was unusual behavior for this device. 

It is likely that this highly anomalous activity detected by Darktrace indicates when the ransomware attack began, likely initial payload download.  

Darktrace DETECT models:

  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System
Figure 2: PCAP of the HTTP connection to the rare endpoint 23.81.246[.]84 showing the failed proxy authentication.

C2 Beaconing 

Following the successful initial access, Hive actors begin to establish their C2 infrastructure on infected networks through numerous connections to C2 servers, and the download of additional stagers. 

On customer networks infected by Hive ransomware, Darktrace identified devices initiating a high volume of connections to multiple rare endpoints. This very likely represented C2 beaconing to the attacker’s infrastructure. In one particular example, further open-source intelligence (OSINT) investigation revealed that these endpoints were associated with Cobalt Strike.

Darktrace DETECT models:

  • Anomalous Connection / Multiple Connections to New External TCP
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Suspicious HTTP Beacons to Dotted Quad 
  • Compromise / SSL or HTTP Beacon
  • Device / Lateral Movement and C2 Activity

Internal Reconnaissance, Lateral Movement and Privilege Escalation

After C2 infrastructure has been established, Hive actors typically begin to uninstall antivirus products in an attempt to remain undetected on the network [3]. They also perform internal reconnaissance to look for vulnerabilities and open channels and attempt to move laterally throughout the network.

Amid the C2 connections, Darktrace was able to detect network scanning activity associated with the attack when a device on one customer network was observed initiating an unusually high volume of connections to other internal devices. A critical network device was also seen writing an executable file “mimikatz.exe” via SMB which appears to be the Mimikatz attack tool commonly used for credential harvesting. 

There were also several detections of lateral movement attempts via RDP and DCE-RPC where the attackers successfully authenticated using an “Administrator” credential. In one instance, a device was also observed performing ITaskScheduler activity. This service is used to remotely control tasks running on machines and is commonly observed as part of malicious lateral movement activity. Darktrace DETECT understood that the above activity represented a deviation from the devices’ normal pattern of behavior and the following models were breached:

Darktrace DETECT models:

  • Anomalous Connection / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Compliance / SMB Drive Write
  • Device / Anomalous ITaskScheduler Activity
  • Device / Attack and Recon Tools
  • Device / Attack and Recon Tools In SMB
  • Device / EXE Files Distributed to Multiple Devices
  • Device / Suspicious Network Scan Activity
  • Device / Increase in New RPC Services
  • User / New Admin Credentials on Server

Data Exfiltration

At this stage of the attack, Hive actors have been known to carry out data exfiltration activity on infected networks using a variety of different methods. The Cybersecurity & Infrastructure Security Agency (CISA) reported that “Hive actors exfiltrate data likely using a combination of Rclone and the cloud storage service Mega[.]nz” [4]. Darktrace DETECT identified an example of this when a device on one customer network was observed making HTTP connections to endpoints related to Mega, including “w.apa.mega.co[.]nz”, with the user agent “rclone/v1.57.0” with at least 3 GiB of data being transferred externally (Figure 3). The same device was also observed transferring at least 3.6 GiB of data via SSL to the rare external IP, 158.51.85[.]157.

Figure 3: A summary of a device’s external connections to multiple endpoints and the respective amounts of data exfiltrated to Mega storage endpoints.

In another case, a device was observed uploading over 16 GiB of data to a rare external endpoint 93.115.27[.]71 over SSH. The endpoint in question was seen in earlier beaconing activity suggesting that this was likely an exfiltration event. 

However, Hive ransomware, like any other RaaS kit, can differ greatly in its techniques and features, and it is important to note that data exfiltration may not always be present in a Hive ransomware attack. In one incident detected by Darktrace, there were no signs of any data leaving the customer environment, indicating data exfiltration was not part of the Hive actor’s objectives.

Darktrace DETECT models:

  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Lots of New Connections
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Device / New User Agent and New IP
  • Unusual Activity / Unusual External Data to New Endpoints
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Enhanced Unusual External Data Transfer

Ransomware Deployment

In the final stage of a typical Hive ransomware attack, the ransomware payload is deployed and begins to encrypt files on infected devices. On one customer network, Darktrace detected several devices connecting to domain controllers (DC) to read a file named “xxx.exe”. Several sources have linked this file name with the Hive ransomware payload [5].

In another example, Darktrace DETECT observed multiple devices downloading the executable files “nua64.exe” and “nua64.dll” from a rare external location, 194.156.90[.]25. OSINT investigation revealed that the files are associated with Hive ransomware.

Figure 4: Security vendor analysis of the malicious file hash [6] associated with Hive ransomware. 

Shortly after the download of this executable, multiple devices were observed performing an unusual amount of file encryption, appending randomly generated strings of characters to file extensions. 

Although it has been reported that earlier versions of Hive ransomware encrypted files with a “.hive” extension [7], Darktrace observed across multiple customers that encrypted files had extensions that were partially-randomized, but consistently 20 characters long, matching the regular expression “[a-zA-Z0-9\-\_]{8}[\-\_]{1}[A-Za-z0-9\-\_]{11}”.

Figure 5: Device Event Log showing SMB reads and writes of encrypted files with a randomly generated extension of 20 characters. 

Following the successful encryption of files, Hive proceeds to drop a ransom note, named “HOW_TO_DECRYPT.txt”, into each affected directory. Typically, the ransom note will contain a link to Hive’s “sales department” and, in the event that exfiltration took place, a link to the “HiveLeaks” site, where attackers threaten to publish exfiltrated data if their demands are not met (Figure 6).  In cases of Hive ransomware detected by Darktrace, multiple devices were observed attempting to contact “HiveLeaks” TOR domains, suggesting that endpoint users had followed links provided to them in ransom notes.

Figure 6: Sample of a Hive ransom note [4].

Examples of file extensions:

  • 36C-AT9-_wm82GvBoCPC
  • 36C-AT9--y6Z1G-RFHDT
  • 36C-AT9-_x2x7FctFJ_q
  • 36C-AT9-_zK16HRC3QiL
  • 8KAIgoDP-wkQ5gnYGhrd
  • kPemi_iF_11GRoa9vb29
  • kPemi_iF_0RERIS1m7x8
  • kPemi_iF_7u7e5zp6enp
  • kPemi_iF_y4u7pB3d3f3
  • U-9Xb0-k__T0U9NJPz-_
  • U-9Xb0-k_6SkA8Njo5pa
  • zm4RoSR1_5HMd_r4a5a9 

Darktrace DETECT models:

  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Compromise / Ransomware / Possible Ransom Note Write
  • Compromise / High Priority Tor2Web
  • Compromise / Tor2Web
  • Device / EXE Files Distributed to Multiple Devices

Conclusion

As Hive ransomware attacks are carried out by different affiliates using varying deployment kits, the tactics employed tend to vary and new IoCs are regularly identified. Furthermore, in 2022 a new variant of Hive was written using the Rust programming language. This represented a major upgrade to Hive, improving its defense evasion techniques and making it even harder to detect [8]. 

Hive is just one of many RaaS offerings currently on the market, and this market is only expected to grow in usage and diversity of presentations.  As ransomware becomes more accessible and easier to deploy it is essential for organizations to adopt efficient security measures to identify ransomware at the earliest possible stage. 

Darktrace DETECT’s Self-Learning AI understands customer networks and learns the expected patterns of behavior across an organization’s digital estate. Using its anomaly-based detection Darktrace is able to identify emerging threats through the detection of unusual or unexpected behavior, without relying on rules and signatures, or known IoCs. 

Credit to: Emily Megan Lim, Cyber Analyst, Hyeongyung Yeom, Senior Cyber Analyst & Analyst Team Lead.

Appendices

MITRE AT&CK Mapping

Reconnaissance

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

Resource Development

T1583.006 – Web Services

Initial Access

T1078 – Valid Accounts

T1190 – Exploit Public-Facing Application

T1200 – Hardware Additions

Execution

T1053.005 – Scheduled Task

T1059.001 – PowerShell

Persistence/Privilege Escalation

T1053.005 – Scheduled Task

T1078 – Valid Accounts

Defense Evasion

T1078 – Valid Accounts

T1207 – Rogue Domain Controller

T1550.002 – Pass the Hash

Discovery

T1018 – Remote System Discovery

T1046 – Network Service Discovery

T1083 – File and Directory Discovery

T1135 – Network Share Discovery

Lateral Movement

T1021.001 – Remote Desktop Protocol

T1021.002 – SMB/Windows Admin Shares

T1021.003 – Distributed Component Object Model

T1080 – Taint Shared Content

T1210 – Exploitation of Remote Services

T1550.002 – Pass the Hash

T1570 – Lateral Tool Transfer

Collection

T1185 – Man in the Browser

Command and Control

T1001 – Data Obfuscation

T1071 – Application Layer Protocol

T1071.001 – Web Protocols

T1090.003 – Multi-hop proxy

T1095 – Non-Application Layer Protocol

T1102.003 – One-Way Communication

T1571 – Non-Standard Port

Exfiltration

T1041 – Exfiltration Over C2 Channel

T1567.002 – Exfiltration to Cloud Storage

Impact

T1486 – Data Encrypted for Impact

T1489 – Service Stop

List of IoCs 

23.81.246[.]84 - IP Address - Likely Malicious File Download Endpoint

146.70.87[.]132 - IP Address - Possible Ransomware Endpoint

5.199.162[.]220 - IP Address - C2 Endpoint

23.227.178[.]65 - IP Address - C2 Endpoint

46.166.161[.]68 - IP Address - C2 Endpoint

46.166.161[.]93 - IP Address - C2 Endpoint

93.115.25[.]139 - IP Address - C2 Endpoint

185.150.1117[.]189 - IP Address - C2 Endpoint

192.53.123[.]202 - IP Address - C2 Endpoint

209.133.223[.]164 - IP Address - Likely C2 Endpoint

cltrixworkspace1[.]com - Domain - C2 Endpoint

vpnupdaters[.]com - Domain - C2 Endpoint

93.115.27[.]71 - IP Address - Possible Exfiltration Endpoint

158.51.85[.]157 - IP Address - Possible Exfiltration Endpoint

w.api.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

*.userstorage.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

741cc67d2e75b6048e96db9d9e2e78bb9a327e87 - SHA1 Hash - Hive Ransomware File

2f9da37641b204ef2645661df9f075005e2295a5 - SHA1 Hash - Likely Hive Ransomware File

hiveleakdbtnp76ulyhi52eag6c6tyc3xw7ez7iqy6wc34gd2nekazyd[.]onion - TOR Domain - Likely Hive Endpoint

References

[1] https://www.justice.gov/opa/pr/us-department-justice-disrupts-hive-ransomware-variant

[2] https://www.varonis.com/blog/hive-ransomware-analysis

[3] https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-hive 

[4]https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-321a

[5] https://www.trendmicro.com/en_us/research/22/c/nokoyawa-ransomware-possibly-related-to-hive-.html

[6] https://www.virustotal.com/gui/file/60f6a63e366e6729e97949622abd9de6d7988bba66f85a4ac8a52f99d3cb4764/detection

[7] https://heimdalsecurity.com/blog/what-is-hive-ransomware/

[8] https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Emily Megan Lim
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI