Blog
/
Email
/
August 11, 2021

How One Email Compromised an Entire Logistics Company

A single phishing email led to a massive compromise at a logistics company in Europe. Discover the importance of email security with increasing SaaS usage.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Aug 2021

Organizations are only as secure as their weakest link. In many cases, that weak link arises in the various cloud applications an organization relies on. Several high-profile groups including APT28 are known to exploit commonly-used passwords to bruteforce their way into businesses around the world. These ‘spray’ campaigns often target Microsoft Office 365 accounts and will only become more frequent as the use of SaaS increases.

This blog analyses how a single phishing email slipped under the radar of the gateway and other traditional tools in place, and eventually led to mass compromise at a logistics company in Europe.

Logistical nightmare

Logistics operators play a critical role across every industry sector. Managing the distribution of goods and services from the seller to the customer, they enable – or bottleneck – an efficient supply chain. Inevitably, logistics companies have become an attractive target for cyber-criminals, due to the high number of organizations they interact with, the pressure they’re under to deliver on time, and the sensitive data they often handle.

It is a simple equation for attackers: do they put in the hard work to infiltrate 20 well-defended organizations, or compromise just one, and from there gain access to all 20 or more? The majority of cyber-threats Darktrace has observed this year have gone for the latter – exploiting less protected third parties to gain a foothold across a range of businesses.

The vaccine supply in particular has fallen under attack, numerous times. Last autumn, threat actors infiltrated a German biomedical organization and launched a phishing campaign to harvest credentials and compromise several organizations involved in the COVID-19 cold chain.

Alongside ransomware, phishing attacks are one of the most pressing concerns facing the industry.

Breaking the chain

At a medium-sized logistics company, a user received one phishing email from a hijacked third party. The email came from a trusted source with a well established history of sending emails, so it easily passed the gateway.

Once the phishing email had reached the inbox, the user clicked on the malicious link and was led to a fake login page, where they were tricked into divulging their credentials.

Four days later, the attacker logged into the account from an unusual location, and proceeded to read files with sensitive information.

The next day, Darktrace detected a new email rule from another unusual location. Almost immediately, a large volume of outbound emails was sent from the account, all containing the suspicious link.

Figure 1: Timeline of the attack — the total dwell time was five days.

Supply and disrupt

Once you are inside an organization’s digital ecosystem, it is easy to move around and compromise more accounts. Most security tools and employees do not question an internal email sent by a trusted user, especially if the user is a senior figure with authority.

So, after this set of outbound emails, unusual activity from anomalous locations was duly seen on other company accounts. These users had been tricked into giving away their details from the emails supposedly sent by their colleague.

More sensitive customer files were read, followed by a second spike in outbound emails from these hijacked accounts.

This time, the emails were sent not internally, but to external contacts. The contacts likely were conducting business with the logistics company at the time, and so were used to receiving emails from the accounts.

In total, over 450 phishing emails were sent to a wide range of third parties. Many of these third parties in turn had their credentials compromised – repeating the cycle once again.

Figure 2: Cyber AI Analyst investigates the suspicious activity of a compromised user, providing a detailed summary with the unusual login location and actions carried out.

Hanging by a thread: The threat of third-party attacks

The source of the initial phishing email that kickstarted this attack was itself from a legitimate third party known to the customer, where presumably the same thing had occured.

This form of Vendor Email Compromise, which can be rinsed and repeated to form a vicious loop, is notoriously difficult for email security solutions to detect, and can lead to heavy reputational and financial damage. To complicate matters, acting against a suspicious email from a known sender can also cause severe business disruption if it turns out to be legitimate.

Because of this, security must move beyond the binary approach of ‘good’ and ‘bad’, towards a more holistic understanding of the contextual setting surrounding any email interaction.

Darktrace accurately detected the multiple anomalies when comparing it to other emails from senders of the same domain. It sent high-priority alerts to the security team, but could not prevent the email from reaching the inbox because it was only in detection mode.

Figure 3: Darktrace’s automatic summary of the initial phishing email gives an overview of the suspicious aspects of the email.

The phishing links during the attack used a third-party tool called Piktochart, designed to create various type of files such as infographics, charts, and forms. While Piktochart has several legitimate applications, it can also be exploited. Gateways thus have a hard time distinguishing between legitimate and malicious Piktochart links. In this case, the gateway rewrote the initial link for analysis, but did not identify it as malicious.

In comparison, Darktrace for Email easily identified the email to be suspicious because it noticed it was out of character for that particular sender, and because the link itself was suspicious. In active mode, the AI would have locked the link and moved the email to the Junk folder, effectively preventing the very first step of the attack and avoiding any further compromise.

Figure 4: Piktochart was rarely seen on the deployment up until this point – the domain was 100% rare. Darktrace therefore easily detected the anomalous nature of this third-party tool usage.

The butterfly effect

Most cyber-attacks begin with just a single point of entry – that is all an attacker requires. One phishing email can be enough to bring a whole supply chain to its knees. With 94% of cyber-attacks beginning in the inbox, and suppliers and vendors in constant communication over multiple SaaS platforms – including Microsoft Teams and Google Cloud – email security tools must be capable of detecting when a trusted third party is acting abnormally.

Especially with the rise of remote working, SaaS usage has surged in businesses worldwide and many have been forced to turn to cloud and SaaS to enable a flexible workforce. While there are obvious benefits, these additions have expanded the attack surface and stretched the limits of traditional security and human security teams.

When it comes to logistics companies – who often act as the middle man in global operations – credential harvesting not only has serious consequences for the customer, but for anyone in the customer’s email contacts, and can lead to major breaches for numerous people and businesses.

Figure 5: Darktrace’s user interface reveals the two spikes in outbound emails that were sent out by compromised company accounts.

Thanks to Darktrace analyst Emma Foulger for her insights on the above threat find.

Learn more about the threats facing logistics providers

Darktrace model detections:

  • SaaS / Compliance / New Email Rule
  • SaaS / Unusual Login and New Email Rule
  • Antigena Email models included
  • Unusual / Unusual Login Location and New Unknown Link
  • Link / Account Hijack Link
  • Link / Outlook Hijack
  • Internal Compromise / Recipient Surge from Unusual Login Location (outbound emails)
  • Internal Compromise / Recipient Surge with Suspicious Content (outbound emails)

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI