ブログ
/
Network
/
November 7, 2022

[Part 1] Analysis of a Raccoon Stealer v1 Infection

Darktrace’s SOC team observed a fast-paced compromise involving Raccoon Stealer v1. See which steps the Raccoon Stealer v1 took to extract company data!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2022

Introduction

Towards the end of March 2022, the operators of Raccoon Stealer announced the closure of the Raccoon Stealer project [1]. In May 2022, Raccoon Stealer v2 was unleashed onto the world, with huge numbers of cases being detected across Darktrace’s client base. In this series of blog posts, we will follow the development of Raccoon Stealer between March and September 2022. We will first shed light on how Raccoon Stealer functioned before its demise, by providing details of a Raccoon Stealer v1 infection which Darktrace’s SOC saw within a client network on the 18th March 2022. In the follow-up post, we will provide details about the surge in Raccoon Stealer v2 cases that Darktrace’s SOC has observed since May 2022.  

What is Raccoon Stealer?

The misuse of stolen account credentials is a primary method used by threat actors to gain initial access to target environments [2]. Threat actors have several means available to them for obtaining account credentials. They may, for example, distribute phishing emails which trick their recipients into divulging account credentials. Alternatively, however, they may install information-stealing malware (i.e, info-stealers) onto users’ devices. The results of credential theft can be devastating. Threat actors may use the credentials to gain access to an organization’s SaaS environment, or they may use them to drain users’ online bank accounts or cryptocurrency wallets. 

Raccoon Stealer is a Malware-as-a-Service (MaaS) info-stealer first publicized in April 2019 on Russian-speaking hacking forums. 

Figure 1: One of the first known mentions of Raccoon Stealer on a Russian-speaking hacking forum named ‘Hack Forums’ on the 13th April 2019

The team of individuals behind Raccoon Stealer provide a variety of services to their customers (known as ‘affiliates’), including access to the info-stealer, an easy-to-use automated backend panel, hosting infrastructure, and 24/7 customer support [3]. 

Once Raccoon Stealer affiliates gain access to the info-stealer, it is up to them to decide how to distribute it. Since 2019, affiliates have been observed distributing the info-stealer via a variety of methods, such as exploit kits, phishing emails, and fake cracked software websites [3]/[4]. Once affiliates succeed in installing Raccoon Stealer onto target systems, the info-stealer will typically seek to obtain sensitive information saved in browsers and cryptocurrency wallets. The info-stealer will then exfiltrate the stolen data to a Command and Control (C2) server. The affiliate can then use the stolen data to conduct harmful follow-up activities. 

Towards the end of March 2022, the team behind Raccoon Stealer publicly announced that they would be suspending their operations after one of their core developers was killed during the Russia-Ukraine conflict [5]. 

Figure 2: Raccoon Stealer resignation post on March 25th 2022

Recent details shared by the US Department of Justice [6]/[7] indicate that it was in fact the arrest, rather than the death, of a key Raccoon Stealer operator which led the Raccoon Stealer team to suspend their operations [8].  

The closure of the Raccoon Stealer project, which ultimately resulted from the FBI-backed dismantling of Raccoon Stealer’s infrastructure in March 2022, did not last long, with the completion of Raccoon Stealer v2 being announced on the Raccoon Stealer Telegram channel on the 17th May 2022 [9]. 

 

Figure 3: Telegram post about new version of Raccoon Stealer

In the second part of this blog series, we will provide details of the recent surge in Raccoon Stealer v2 activity. In this post, however, we will provide insight into how the old version of Raccoon Stealer functioned just before its demise, by providing details of a Raccoon Stealer v1 infection which occurred on the 18th March 2022. 

Attack Details

On the 18th March, at around 13:00 (UTC), a user’s device within a customer’s network was seen contacting several websites providing fake cracked software. 

Figure 4: The above figure — obtained from the Darktrace Event Log for the infected device — highlights its connections to cracked software websites such as ‘licensekeysfree[.]com’ and ‘hdlicense[.]com’ before contacting ‘lion-files[.]xyz’ and ‘www.mediafire[.]com’

The user’s attempt to download cracked software from one of these websites resulted in their device making an HTTP GET request with a URI string containing ‘autodesk-revit-crack-v2022-serial-number-2022’ to an external host named ‘lion-filez[.]xyz’

Figure 5: Screenshot from hdlicense[.]com around the time of the infection shows a “Download” button linking to the ‘lion-filez[.]xyz’ endpoint

The device’s HTTP GET request to lion-filez[.]xyz was immediately followed by an HTTPS connection to the file hosting service, www.mediafire[.]com. Given that threat actors are known to abuse platforms such as MediaFire and Discord CDN to host their malicious payloads, it is likely that the user’s device downloaded the Raccoon Stealer v1 sample over its HTTPS connection to www.mediafire[.]com.  

After installing the info-stealer sample, the user’s device was seen making an HTTP GET request with the URI string ‘/g_shock_casio_easy’ to 194.180.191[.]185. The endpoint responded to the request with data related to a Telegram channel named ‘G-Shock’.

Figure 6: Telegram channel ‘@g_shock_casio_easy’

The returned data included the Telegram channel’s description, which in this case, was a base64 encoded and RC4 encrypted string of characters [10]/[11]. The Raccoon Stealer sample decoded and decrypted this string of characters to obtain its C2 IP address, 188.166.49[.]196. This technique used by Raccoon Stealer v1 closely mirrors the espionage method known as ‘dead drop’ — a method in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. In this case, the operators of Raccoon Stealer ‘left’ the malware’s C2 IP address within the description of a Telegram channel. Usage of this method allowed the operators of Raccoon Stealer to easily change the malware’s C2 infrastructure.  

After obtaining the C2 IP address from the ‘G-Shock’ Telegram channel, the Raccoon Stealer sample made an HTTP POST request with the URI string ‘/’ to the C2 IP address, 188.166.49[.]196. This POST request contained a Windows GUID,  a username, and a configuration ID. These details were RC4 encrypted and base64 encoded [12]. The C2 server responded to this HTTP POST request with JSON-formatted configuration information [13], including an identifier string, URL paths for additional files, along with several other fields. This configuration information was also concealed using RC4 encryption and base64 encoding.  

Figure 7- Fields within the JSON-formatted configuration data [13]

In this case, the server’s response included the identifier string ‘hv4inX8BFBZhxYvKFq3x’, along with the following URL paths:

  • /l/f/hv4inX8BFBZhxYvKFq3x/77d765d8831b4a7d8b5e56950ceb96b7c7b0ed70
  • /l/f/hv4inX8BFBZhxYvKFq3x/0cb4ab70083cf5985b2bac837ca4eacb22e9b711
  • /l/f/hv4inX8BFBZhxYvKFq3x/5e2a950c07979c670b1553b59b3a25c9c2bb899b
  • /l/f/hv4inX8BFBZhxYvKFq3x/2524214eeea6452eaad6ea1135ed69e98bf72979

After retrieving configuration data, the user’s device was seen making HTTP GET requests with the above URI strings to the C2 server. The C2 server responded to these requests with legitimate library files such as sqlite3.dll. Raccoon Stealer uses these libraries to extract data from targeted applications. 

Once the Raccoon Stealer sample had collected relevant data, it made an HTTP POST request with the URI string ‘/’ to the C2 server. This posted data likely included a ZIP file (named with the identifier string) containing stolen credentials [13]. 

The observed infection chain, which lasted around 20 minutes, consisted of the following steps:

1. User’s device installs Raccoon Stealer v1 samples from the user attempting to download cracked software

2. User’s device obtains the info-stealer’s C2 IP address from the description text of a Telegram channel

3. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains a Windows GUID,  a username, and a configuration ID. The response to the request contains configuration details, including an identifier string and URL paths for additional files

4. User’s device downloads library files from the C2 server

5. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains stolen data

Darktrace Coverage 

Although RESPOND/Network was not enabled on the customer’s deployment, DETECT picked up on several of the info-stealer’s activities. In particular, the device’s downloads of library files from the C2 server caused the following DETECT/Network models to breach:

  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
Figure 8: Event Log for the infected device shows 'Anomalous File / Masqueraded File Transfer' model breach after the device's download of a library file from the C2 server

Since the customer was subscribed to the Darktrace Proactive Threat Notification (PTN) service, they were proactively notified of the info-stealer’s activities. The quick response by Darktrace’s 24/7 SOC team helped the customer to contain the infection and to prevent further damage from being caused. Having been alerted to the info-stealer activity by the SOC team, the customer would also have been able to change the passwords for the accounts whose credentials were exfiltrated.

If RESPOND/Network had been enabled on the customer’s deployment, then it would have blocked the device’s connections to the C2 server, which would have likely prevented any stolen data from being exfiltrated.

Conclusion

Towards the end of March 2022, the team behind Raccoon Stealer announced that they would be suspending their operations. Recent developments suggest that the arrest of a core Raccoon Stealer developer was responsible for this suspension. Just before the Raccoon Stealer team were forced to shut down, Darktrace’s SOC team observed a Raccoon Stealer infection within a client’s network. In this post, we have provided details of the network-based behaviors displayed by the observed Raccoon Stealer sample. Since these v1 samples are no longer active, the details provided here are only intended to provide historical insight into the development of Raccoon Stealer’s operations and the activities carried out by Raccoon Stealer v1 just before its demise. In the next post of this series, we will discuss and provide details of Raccoon Stealer v2 — the new and highly prolific version of Raccoon Stealer. 

Thanks to Stefan Rowe and the Threat Research Team for their contributions to this blog.

References

[1] https://twitter.com/3xp0rtblog/status/1507312171914461188

[2] https://www.gartner.com/doc/reprints?id=1-29OTFFPI&ct=220411&st=sb

[3] https://www.cybereason.com/blog/research/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block

[4] https://www.cyberark.com/resources/threat-research-blog/raccoon-the-story-of-a-typical-infostealer

[5] https://www.bleepingcomputer.com/news/security/raccoon-stealer-malware-suspends-operations-due-to-war-in-ukraine/

[6] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[7] https://www.youtube.com/watch?v=Fsz6acw-ZJY

[8] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[9] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[10] https://blog.cyble.com/2021/10/21/raccoon-stealer-under-the-lens-a-deep-dive-analysis/

[11] https://decoded.avast.io/vladimirmartyanov/raccoon-stealer-trash-panda-abuses-telegram/

[12] https://blogs.blackberry.com/en/2021/09/threat-thursday-raccoon-infostealer

[13] https://cyberint.com/blog/research/raccoon-stealer/

Appendices

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ