Blog
/
Network
/
November 7, 2022

[Part 1] Analysis of a Raccoon Stealer v1 Infection

Darktrace’s SOC team observed a fast-paced compromise involving Raccoon Stealer v1. See which steps the Raccoon Stealer v1 took to extract company data!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2022

Introduction

Towards the end of March 2022, the operators of Raccoon Stealer announced the closure of the Raccoon Stealer project [1]. In May 2022, Raccoon Stealer v2 was unleashed onto the world, with huge numbers of cases being detected across Darktrace’s client base. In this series of blog posts, we will follow the development of Raccoon Stealer between March and September 2022. We will first shed light on how Raccoon Stealer functioned before its demise, by providing details of a Raccoon Stealer v1 infection which Darktrace’s SOC saw within a client network on the 18th March 2022. In the follow-up post, we will provide details about the surge in Raccoon Stealer v2 cases that Darktrace’s SOC has observed since May 2022.  

What is Raccoon Stealer?

The misuse of stolen account credentials is a primary method used by threat actors to gain initial access to target environments [2]. Threat actors have several means available to them for obtaining account credentials. They may, for example, distribute phishing emails which trick their recipients into divulging account credentials. Alternatively, however, they may install information-stealing malware (i.e, info-stealers) onto users’ devices. The results of credential theft can be devastating. Threat actors may use the credentials to gain access to an organization’s SaaS environment, or they may use them to drain users’ online bank accounts or cryptocurrency wallets. 

Raccoon Stealer is a Malware-as-a-Service (MaaS) info-stealer first publicized in April 2019 on Russian-speaking hacking forums. 

Figure 1: One of the first known mentions of Raccoon Stealer on a Russian-speaking hacking forum named ‘Hack Forums’ on the 13th April 2019

The team of individuals behind Raccoon Stealer provide a variety of services to their customers (known as ‘affiliates’), including access to the info-stealer, an easy-to-use automated backend panel, hosting infrastructure, and 24/7 customer support [3]. 

Once Raccoon Stealer affiliates gain access to the info-stealer, it is up to them to decide how to distribute it. Since 2019, affiliates have been observed distributing the info-stealer via a variety of methods, such as exploit kits, phishing emails, and fake cracked software websites [3]/[4]. Once affiliates succeed in installing Raccoon Stealer onto target systems, the info-stealer will typically seek to obtain sensitive information saved in browsers and cryptocurrency wallets. The info-stealer will then exfiltrate the stolen data to a Command and Control (C2) server. The affiliate can then use the stolen data to conduct harmful follow-up activities. 

Towards the end of March 2022, the team behind Raccoon Stealer publicly announced that they would be suspending their operations after one of their core developers was killed during the Russia-Ukraine conflict [5]. 

Figure 2: Raccoon Stealer resignation post on March 25th 2022

Recent details shared by the US Department of Justice [6]/[7] indicate that it was in fact the arrest, rather than the death, of a key Raccoon Stealer operator which led the Raccoon Stealer team to suspend their operations [8].  

The closure of the Raccoon Stealer project, which ultimately resulted from the FBI-backed dismantling of Raccoon Stealer’s infrastructure in March 2022, did not last long, with the completion of Raccoon Stealer v2 being announced on the Raccoon Stealer Telegram channel on the 17th May 2022 [9]. 

 

Figure 3: Telegram post about new version of Raccoon Stealer

In the second part of this blog series, we will provide details of the recent surge in Raccoon Stealer v2 activity. In this post, however, we will provide insight into how the old version of Raccoon Stealer functioned just before its demise, by providing details of a Raccoon Stealer v1 infection which occurred on the 18th March 2022. 

Attack Details

On the 18th March, at around 13:00 (UTC), a user’s device within a customer’s network was seen contacting several websites providing fake cracked software. 

Figure 4: The above figure — obtained from the Darktrace Event Log for the infected device — highlights its connections to cracked software websites such as ‘licensekeysfree[.]com’ and ‘hdlicense[.]com’ before contacting ‘lion-files[.]xyz’ and ‘www.mediafire[.]com’

The user’s attempt to download cracked software from one of these websites resulted in their device making an HTTP GET request with a URI string containing ‘autodesk-revit-crack-v2022-serial-number-2022’ to an external host named ‘lion-filez[.]xyz’

Figure 5: Screenshot from hdlicense[.]com around the time of the infection shows a “Download” button linking to the ‘lion-filez[.]xyz’ endpoint

The device’s HTTP GET request to lion-filez[.]xyz was immediately followed by an HTTPS connection to the file hosting service, www.mediafire[.]com. Given that threat actors are known to abuse platforms such as MediaFire and Discord CDN to host their malicious payloads, it is likely that the user’s device downloaded the Raccoon Stealer v1 sample over its HTTPS connection to www.mediafire[.]com.  

After installing the info-stealer sample, the user’s device was seen making an HTTP GET request with the URI string ‘/g_shock_casio_easy’ to 194.180.191[.]185. The endpoint responded to the request with data related to a Telegram channel named ‘G-Shock’.

Figure 6: Telegram channel ‘@g_shock_casio_easy’

The returned data included the Telegram channel’s description, which in this case, was a base64 encoded and RC4 encrypted string of characters [10]/[11]. The Raccoon Stealer sample decoded and decrypted this string of characters to obtain its C2 IP address, 188.166.49[.]196. This technique used by Raccoon Stealer v1 closely mirrors the espionage method known as ‘dead drop’ — a method in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. In this case, the operators of Raccoon Stealer ‘left’ the malware’s C2 IP address within the description of a Telegram channel. Usage of this method allowed the operators of Raccoon Stealer to easily change the malware’s C2 infrastructure.  

After obtaining the C2 IP address from the ‘G-Shock’ Telegram channel, the Raccoon Stealer sample made an HTTP POST request with the URI string ‘/’ to the C2 IP address, 188.166.49[.]196. This POST request contained a Windows GUID,  a username, and a configuration ID. These details were RC4 encrypted and base64 encoded [12]. The C2 server responded to this HTTP POST request with JSON-formatted configuration information [13], including an identifier string, URL paths for additional files, along with several other fields. This configuration information was also concealed using RC4 encryption and base64 encoding.  

Figure 7- Fields within the JSON-formatted configuration data [13]

In this case, the server’s response included the identifier string ‘hv4inX8BFBZhxYvKFq3x’, along with the following URL paths:

  • /l/f/hv4inX8BFBZhxYvKFq3x/77d765d8831b4a7d8b5e56950ceb96b7c7b0ed70
  • /l/f/hv4inX8BFBZhxYvKFq3x/0cb4ab70083cf5985b2bac837ca4eacb22e9b711
  • /l/f/hv4inX8BFBZhxYvKFq3x/5e2a950c07979c670b1553b59b3a25c9c2bb899b
  • /l/f/hv4inX8BFBZhxYvKFq3x/2524214eeea6452eaad6ea1135ed69e98bf72979

After retrieving configuration data, the user’s device was seen making HTTP GET requests with the above URI strings to the C2 server. The C2 server responded to these requests with legitimate library files such as sqlite3.dll. Raccoon Stealer uses these libraries to extract data from targeted applications. 

Once the Raccoon Stealer sample had collected relevant data, it made an HTTP POST request with the URI string ‘/’ to the C2 server. This posted data likely included a ZIP file (named with the identifier string) containing stolen credentials [13]. 

The observed infection chain, which lasted around 20 minutes, consisted of the following steps:

1. User’s device installs Raccoon Stealer v1 samples from the user attempting to download cracked software

2. User’s device obtains the info-stealer’s C2 IP address from the description text of a Telegram channel

3. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains a Windows GUID,  a username, and a configuration ID. The response to the request contains configuration details, including an identifier string and URL paths for additional files

4. User’s device downloads library files from the C2 server

5. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains stolen data

Darktrace Coverage 

Although RESPOND/Network was not enabled on the customer’s deployment, DETECT picked up on several of the info-stealer’s activities. In particular, the device’s downloads of library files from the C2 server caused the following DETECT/Network models to breach:

  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
Figure 8: Event Log for the infected device shows 'Anomalous File / Masqueraded File Transfer' model breach after the device's download of a library file from the C2 server

Since the customer was subscribed to the Darktrace Proactive Threat Notification (PTN) service, they were proactively notified of the info-stealer’s activities. The quick response by Darktrace’s 24/7 SOC team helped the customer to contain the infection and to prevent further damage from being caused. Having been alerted to the info-stealer activity by the SOC team, the customer would also have been able to change the passwords for the accounts whose credentials were exfiltrated.

If RESPOND/Network had been enabled on the customer’s deployment, then it would have blocked the device’s connections to the C2 server, which would have likely prevented any stolen data from being exfiltrated.

Conclusion

Towards the end of March 2022, the team behind Raccoon Stealer announced that they would be suspending their operations. Recent developments suggest that the arrest of a core Raccoon Stealer developer was responsible for this suspension. Just before the Raccoon Stealer team were forced to shut down, Darktrace’s SOC team observed a Raccoon Stealer infection within a client’s network. In this post, we have provided details of the network-based behaviors displayed by the observed Raccoon Stealer sample. Since these v1 samples are no longer active, the details provided here are only intended to provide historical insight into the development of Raccoon Stealer’s operations and the activities carried out by Raccoon Stealer v1 just before its demise. In the next post of this series, we will discuss and provide details of Raccoon Stealer v2 — the new and highly prolific version of Raccoon Stealer. 

Thanks to Stefan Rowe and the Threat Research Team for their contributions to this blog.

References

[1] https://twitter.com/3xp0rtblog/status/1507312171914461188

[2] https://www.gartner.com/doc/reprints?id=1-29OTFFPI&ct=220411&st=sb

[3] https://www.cybereason.com/blog/research/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block

[4] https://www.cyberark.com/resources/threat-research-blog/raccoon-the-story-of-a-typical-infostealer

[5] https://www.bleepingcomputer.com/news/security/raccoon-stealer-malware-suspends-operations-due-to-war-in-ukraine/

[6] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[7] https://www.youtube.com/watch?v=Fsz6acw-ZJY

[8] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[9] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[10] https://blog.cyble.com/2021/10/21/raccoon-stealer-under-the-lens-a-deep-dive-analysis/

[11] https://decoded.avast.io/vladimirmartyanov/raccoon-stealer-trash-panda-abuses-telegram/

[12] https://blogs.blackberry.com/en/2021/09/threat-thursday-raccoon-infostealer

[13] https://cyberint.com/blog/research/raccoon-stealer/

Appendices

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI