Blog
/
Network
/
November 7, 2022

[Part 1] Analysis of a Raccoon Stealer v1 Infection

Darktrace’s SOC team observed a fast-paced compromise involving Raccoon Stealer v1. See which steps the Raccoon Stealer v1 took to extract company data!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2022

Introduction

Towards the end of March 2022, the operators of Raccoon Stealer announced the closure of the Raccoon Stealer project [1]. In May 2022, Raccoon Stealer v2 was unleashed onto the world, with huge numbers of cases being detected across Darktrace’s client base. In this series of blog posts, we will follow the development of Raccoon Stealer between March and September 2022. We will first shed light on how Raccoon Stealer functioned before its demise, by providing details of a Raccoon Stealer v1 infection which Darktrace’s SOC saw within a client network on the 18th March 2022. In the follow-up post, we will provide details about the surge in Raccoon Stealer v2 cases that Darktrace’s SOC has observed since May 2022.  

What is Raccoon Stealer?

The misuse of stolen account credentials is a primary method used by threat actors to gain initial access to target environments [2]. Threat actors have several means available to them for obtaining account credentials. They may, for example, distribute phishing emails which trick their recipients into divulging account credentials. Alternatively, however, they may install information-stealing malware (i.e, info-stealers) onto users’ devices. The results of credential theft can be devastating. Threat actors may use the credentials to gain access to an organization’s SaaS environment, or they may use them to drain users’ online bank accounts or cryptocurrency wallets. 

Raccoon Stealer is a Malware-as-a-Service (MaaS) info-stealer first publicized in April 2019 on Russian-speaking hacking forums. 

Figure 1: One of the first known mentions of Raccoon Stealer on a Russian-speaking hacking forum named ‘Hack Forums’ on the 13th April 2019

The team of individuals behind Raccoon Stealer provide a variety of services to their customers (known as ‘affiliates’), including access to the info-stealer, an easy-to-use automated backend panel, hosting infrastructure, and 24/7 customer support [3]. 

Once Raccoon Stealer affiliates gain access to the info-stealer, it is up to them to decide how to distribute it. Since 2019, affiliates have been observed distributing the info-stealer via a variety of methods, such as exploit kits, phishing emails, and fake cracked software websites [3]/[4]. Once affiliates succeed in installing Raccoon Stealer onto target systems, the info-stealer will typically seek to obtain sensitive information saved in browsers and cryptocurrency wallets. The info-stealer will then exfiltrate the stolen data to a Command and Control (C2) server. The affiliate can then use the stolen data to conduct harmful follow-up activities. 

Towards the end of March 2022, the team behind Raccoon Stealer publicly announced that they would be suspending their operations after one of their core developers was killed during the Russia-Ukraine conflict [5]. 

Figure 2: Raccoon Stealer resignation post on March 25th 2022

Recent details shared by the US Department of Justice [6]/[7] indicate that it was in fact the arrest, rather than the death, of a key Raccoon Stealer operator which led the Raccoon Stealer team to suspend their operations [8].  

The closure of the Raccoon Stealer project, which ultimately resulted from the FBI-backed dismantling of Raccoon Stealer’s infrastructure in March 2022, did not last long, with the completion of Raccoon Stealer v2 being announced on the Raccoon Stealer Telegram channel on the 17th May 2022 [9]. 

 

Figure 3: Telegram post about new version of Raccoon Stealer

In the second part of this blog series, we will provide details of the recent surge in Raccoon Stealer v2 activity. In this post, however, we will provide insight into how the old version of Raccoon Stealer functioned just before its demise, by providing details of a Raccoon Stealer v1 infection which occurred on the 18th March 2022. 

Attack Details

On the 18th March, at around 13:00 (UTC), a user’s device within a customer’s network was seen contacting several websites providing fake cracked software. 

Figure 4: The above figure — obtained from the Darktrace Event Log for the infected device — highlights its connections to cracked software websites such as ‘licensekeysfree[.]com’ and ‘hdlicense[.]com’ before contacting ‘lion-files[.]xyz’ and ‘www.mediafire[.]com’

The user’s attempt to download cracked software from one of these websites resulted in their device making an HTTP GET request with a URI string containing ‘autodesk-revit-crack-v2022-serial-number-2022’ to an external host named ‘lion-filez[.]xyz’

Figure 5: Screenshot from hdlicense[.]com around the time of the infection shows a “Download” button linking to the ‘lion-filez[.]xyz’ endpoint

The device’s HTTP GET request to lion-filez[.]xyz was immediately followed by an HTTPS connection to the file hosting service, www.mediafire[.]com. Given that threat actors are known to abuse platforms such as MediaFire and Discord CDN to host their malicious payloads, it is likely that the user’s device downloaded the Raccoon Stealer v1 sample over its HTTPS connection to www.mediafire[.]com.  

After installing the info-stealer sample, the user’s device was seen making an HTTP GET request with the URI string ‘/g_shock_casio_easy’ to 194.180.191[.]185. The endpoint responded to the request with data related to a Telegram channel named ‘G-Shock’.

Figure 6: Telegram channel ‘@g_shock_casio_easy’

The returned data included the Telegram channel’s description, which in this case, was a base64 encoded and RC4 encrypted string of characters [10]/[11]. The Raccoon Stealer sample decoded and decrypted this string of characters to obtain its C2 IP address, 188.166.49[.]196. This technique used by Raccoon Stealer v1 closely mirrors the espionage method known as ‘dead drop’ — a method in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. In this case, the operators of Raccoon Stealer ‘left’ the malware’s C2 IP address within the description of a Telegram channel. Usage of this method allowed the operators of Raccoon Stealer to easily change the malware’s C2 infrastructure.  

After obtaining the C2 IP address from the ‘G-Shock’ Telegram channel, the Raccoon Stealer sample made an HTTP POST request with the URI string ‘/’ to the C2 IP address, 188.166.49[.]196. This POST request contained a Windows GUID,  a username, and a configuration ID. These details were RC4 encrypted and base64 encoded [12]. The C2 server responded to this HTTP POST request with JSON-formatted configuration information [13], including an identifier string, URL paths for additional files, along with several other fields. This configuration information was also concealed using RC4 encryption and base64 encoding.  

Figure 7- Fields within the JSON-formatted configuration data [13]

In this case, the server’s response included the identifier string ‘hv4inX8BFBZhxYvKFq3x’, along with the following URL paths:

  • /l/f/hv4inX8BFBZhxYvKFq3x/77d765d8831b4a7d8b5e56950ceb96b7c7b0ed70
  • /l/f/hv4inX8BFBZhxYvKFq3x/0cb4ab70083cf5985b2bac837ca4eacb22e9b711
  • /l/f/hv4inX8BFBZhxYvKFq3x/5e2a950c07979c670b1553b59b3a25c9c2bb899b
  • /l/f/hv4inX8BFBZhxYvKFq3x/2524214eeea6452eaad6ea1135ed69e98bf72979

After retrieving configuration data, the user’s device was seen making HTTP GET requests with the above URI strings to the C2 server. The C2 server responded to these requests with legitimate library files such as sqlite3.dll. Raccoon Stealer uses these libraries to extract data from targeted applications. 

Once the Raccoon Stealer sample had collected relevant data, it made an HTTP POST request with the URI string ‘/’ to the C2 server. This posted data likely included a ZIP file (named with the identifier string) containing stolen credentials [13]. 

The observed infection chain, which lasted around 20 minutes, consisted of the following steps:

1. User’s device installs Raccoon Stealer v1 samples from the user attempting to download cracked software

2. User’s device obtains the info-stealer’s C2 IP address from the description text of a Telegram channel

3. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains a Windows GUID,  a username, and a configuration ID. The response to the request contains configuration details, including an identifier string and URL paths for additional files

4. User’s device downloads library files from the C2 server

5. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains stolen data

Darktrace Coverage 

Although RESPOND/Network was not enabled on the customer’s deployment, DETECT picked up on several of the info-stealer’s activities. In particular, the device’s downloads of library files from the C2 server caused the following DETECT/Network models to breach:

  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
Figure 8: Event Log for the infected device shows 'Anomalous File / Masqueraded File Transfer' model breach after the device's download of a library file from the C2 server

Since the customer was subscribed to the Darktrace Proactive Threat Notification (PTN) service, they were proactively notified of the info-stealer’s activities. The quick response by Darktrace’s 24/7 SOC team helped the customer to contain the infection and to prevent further damage from being caused. Having been alerted to the info-stealer activity by the SOC team, the customer would also have been able to change the passwords for the accounts whose credentials were exfiltrated.

If RESPOND/Network had been enabled on the customer’s deployment, then it would have blocked the device’s connections to the C2 server, which would have likely prevented any stolen data from being exfiltrated.

Conclusion

Towards the end of March 2022, the team behind Raccoon Stealer announced that they would be suspending their operations. Recent developments suggest that the arrest of a core Raccoon Stealer developer was responsible for this suspension. Just before the Raccoon Stealer team were forced to shut down, Darktrace’s SOC team observed a Raccoon Stealer infection within a client’s network. In this post, we have provided details of the network-based behaviors displayed by the observed Raccoon Stealer sample. Since these v1 samples are no longer active, the details provided here are only intended to provide historical insight into the development of Raccoon Stealer’s operations and the activities carried out by Raccoon Stealer v1 just before its demise. In the next post of this series, we will discuss and provide details of Raccoon Stealer v2 — the new and highly prolific version of Raccoon Stealer. 

Thanks to Stefan Rowe and the Threat Research Team for their contributions to this blog.

References

[1] https://twitter.com/3xp0rtblog/status/1507312171914461188

[2] https://www.gartner.com/doc/reprints?id=1-29OTFFPI&ct=220411&st=sb

[3] https://www.cybereason.com/blog/research/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block

[4] https://www.cyberark.com/resources/threat-research-blog/raccoon-the-story-of-a-typical-infostealer

[5] https://www.bleepingcomputer.com/news/security/raccoon-stealer-malware-suspends-operations-due-to-war-in-ukraine/

[6] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[7] https://www.youtube.com/watch?v=Fsz6acw-ZJY

[8] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[9] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[10] https://blog.cyble.com/2021/10/21/raccoon-stealer-under-the-lens-a-deep-dive-analysis/

[11] https://decoded.avast.io/vladimirmartyanov/raccoon-stealer-trash-panda-abuses-telegram/

[12] https://blogs.blackberry.com/en/2021/09/threat-thursday-raccoon-infostealer

[13] https://cyberint.com/blog/research/raccoon-stealer/

Appendices

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI