ブログ
/
Network
/
January 30, 2023

Qakbot Resurgence in the Cyber Landscape

Stay informed on the evolving threat Qakbot. Protect yourself from the Qakbot resurgence! Learn more from our Darktrace AI Cybersecurity experts!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023

In June 2022, Darktrace observed a surge in Qakbot infections across its client base. The detected Qakbot infections, which in some cases led to the delivery of secondary payloads such as Cobalt Strike and Dark VNC, were initiated through novel delivery methods birthed from Microsoft’s default blocking of XL4 and VBA macros in early 2022 [1]/[2]/[3]/[4] and from the public disclosure in May 2022 [5] of the critical Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT). Despite the changes made to Qakbot’s delivery methods, Qakbot infections still inevitably resulted in unusual patterns of network activity. In this blog, we will provide details of these network activities, along with Darktrace/Network’s coverage of them. 

Qakbot Background 

Qakbot emerged in 2007 as a banking trojan designed to steal sensitive data such as banking credentials.  Since then, Qakbot has developed into a highly modular triple-threat powerhouse used to not only steal information, but to also drop malicious payloads and to serve as a backdoor. The malware is also versatile, with its delivery methods regularly changing in response to the changing threat landscape.  

Threat actors deliver Qakbot through email-based delivery methods. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros.  Opening these attachments and then enabling the macros within them would lead users’ devices to install Qakbot.  

Actors who deliver Qakbot onto users’ devices may either sell their access to other actors, or they may leverage Qakbot’s capabilities to pursue their own objectives [6]. A common objective of actors that use Qakbot is to drop Cobalt Strike beacons onto infected systems. Actors will then leverage the interactive access provided by Cobalt Strike to conduct extensive reconnaissance and lateral movement activities in preparation for widespread ransomware deployment. Qakbot’s close ties to ransomware activity, along with its modularity and versatility, make the malware a significant threat to organisations’ digital environments.

Activity Details and Qakbot Delivery Methods

During the month of June, variationsof the following pattern of network activity were observed in several client networks:

1.     User’s device contacts an email service such as outlook.office[.]com or mail.google[.]com

2.     User’s device makes an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. The request is responded to with an HTML file containing a exploit for the Follina vulnerability (CVE-2022-30190)

3.     User’s device makes an HTTP GET request with a cURL User-Agent string and a target URI ending in ‘.dat’ to an unusual external endpoint. The request is responded to with a Qakbot DLL sample

4.     User’s device contacts Qakbot Command and Control servers over ports such as 443, 995, 2222, and 32101

In some cases, only steps 1 and 4 were seen, and in other cases, only steps 1, 3, and 4 were seen. The different variations of the pattern correspond to different Qakbot delivery methods.

Figure 1: Geographic distribution of Darktrace clients affected by Qakbot

Qakbot is known to be delivered via malicious email attachments [7]. The Qakbot infections observed across Darktrace’s client base during June were likely initiated through HTML smuggling — a method which consists in embedding malicious code into HTML attachments. Based on open-source reporting [8]-[14] and on observed patterns of network traffic, we assess with moderate to high confidence that the Qakbot infections observed across Darktrace’s client base during June 2022 were initiated via one of the following three methods:

  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a LNK file, which when opened, causes the user's device to make an external HTTP GET request with a cURL User-Agent string and a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DLL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a docx file, which when opened, causes the user's device to make an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. If successful, the HTTP GET request is responded to with an HTML file containing a Follina exploit. The Follina exploit causes the user's device to make an external HTTP GET with a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a Qakbot DLL and a LNK file, which when opened, causes the DLL to run.

The usage of these delivery methods illustrate how threat actors are adopting to a post-macro world [4], with their malware delivery techniques shifting from usage of macros-embedding Office documents to usage of container files, Windows Shortcut (LNK) files, and exploits for novel vulnerabilities. 

The Qakbot infections observed across Darktrace’s client base did not only vary in terms of their delivery methods — they also differed in terms of their follow-up activities. In some cases, no follow-up activities were observed. In other cases, however, actors were seen leveraging Qakbot to exfiltrate data and to deliver follow-up payloads such as Cobalt Strike and Dark VNC.  These follow-up activities were likely preparation for the deployment of ransomware. Darktrace’s early detection of Qakbot activity within client environments enabled security teams to take actions which likely prevented the deployment of ransomware. 

Darktrace Coverage 

Users’ interactions with malicious email attachments typically resulted in their devices making cURL HTTP GET requests with empty Host headers and target URIs ending in ‘.dat’ (such as as ‘/24736.dat’ and ‘/noFindThem.dat’) to rare, external endpoints. In cases where the Follina vulnerability is believed to have been exploited, users’ devices were seen making HTTP GET requests to 185.234.247[.]119 with a Microsoft Office User-Agent string before making cURL HTTP GET requests. The following Darktrace DETECT/Network models typically breached as a result of these HTTP activities:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download 

These DETECT models were able to capture the unusual usage of Office and cURL User-Agent strings on affected devices, as well as the downloads of the Qakbot DLL from rare external endpoints. These models look for unusual activity that falls outside a device’s usual pattern of behavior rather than for activity involving User-Agent strings, URIs, files, and external IPs which are known to be malicious.

When enabled, Darktrace RESPOND/Network autonomously intervened, taking actions such as ‘Enforce group pattern of life’ and ‘Block connections’ to quickly intercept connections to Qakbot infrastructure. 

Figure 2: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download a file containing a Follina exploit
Figure 3: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download Qakbot
Figure 4: The Event Log for an infected device highlights the moment a connection to the endpoint outlook.office365[.]com was made. This was followed by an executable file transfer detection and use of a new User-Agent, curl/7.9.1

After installing Qakbot, users’ devices started making connections to Command and Control (C2) endpoints over ports such as 443, 22, 990, 995, 1194, 2222, 2078, 32101. Cobalt Strike and Dark VNC may have been delivered over some of these C2 connections, as evidenced by subsequent connections to endpoints associated with Cobalt Strike and Dark VNC. These C2 activities typically caused the following Darktrace DETECT/Network models to breach: 

  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Suspicious Beaconing Behavior
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Slow Beaconing Activity To External Rare
Figure 5: This Device Event Log illustrates the Command and Control activity displayed by a Qakbot-infected device

The Darktrace DETECT/Network models which detected these C2 activities do not look for devices making connections to known, malicious endpoints. Rather, they look for devices deviating from their ordinary patterns of activity, making connections to external endpoints which internal devices do not usually connect to, over ports which devices do not normally connect over. 

In some cases, actors were seen exfiltrating data from Qakbot-infected systems and dropping Cobalt Strike in order to conduct extensive discovery. These exfiltration activities typically caused the following models to breach:

  • Anomalous Connection / Data Sent to Rare Domain
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Unusual Activity / Unusual External Data to New Endpoints

The reconnaissance and brute-force activities carried out by actors typically resulted in breaches of the following models:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Anomalous Connection / SMB Enumeration
  • Device / New or Uncommon WMI Activity
  •  Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  •  Device / SMB Lateral Movement
  •  Device / Increase in New RPC Services
  •  Device / Spike in LDAP Activity
  • Device / Possible SMB/NTLM Brute Force
  • Device / SMB Session Brute Force (Non-Admin)
  • Device / SMB Session Brute Force (Admin)
  • Device / Anomalous NTLM Brute Force

Conclusion

June 2022 saw Qakbot swiftly mould itself in response to Microsoft's default blocking of macros and the public disclosure of the Follina vulnerability. The evolution of the threat landscape in the first half of 2022 caused Qakbot to undergo changes in its delivery methods, shifting from delivery via macros-based methods to delivery via HTML smuggling methods. The effectiveness of these novel delivery methods where highlighted in Darktrace's client base, where large volumes of Qakbot infections were seen during June 2022. Leveraging Self-Learning AI, Darktrace DETECT/Network was able to detect the unusual network behaviors which inevitably resulted from these novel Qakbot infections. Given that the actors behind these Qakbot infections were likely seeking to deploy ransomware, these detections, along with Darktrace RESPOND/Network’s autonomous interventions, ultimately helped to protect affected Darktrace clients from significant business disruption.  

Appendices

List of IOCs

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.proofpoint.com/uk/blog/threat-insight/how-threat-actors-are-adapting-post-macro-world

[5] https://twitter.com/nao_sec/status/1530196847679401984

[6] https://www.microsoft.com/security/blog/2021/12/09/a-closer-look-at-qakbots-latest-building-blocks-and-how-to-knock-them-down/

[7] https://www.zscaler.com/blogs/security-research/rise-qakbot-attacks-traced-evolving-threat-techniques

[8] https://www.esentire.com/blog/resurgence-in-qakbot-malware-activity

[9] https://www.fortinet.com/blog/threat-research/new-variant-of-qakbot-spread-by-phishing-emails

[10] https://twitter.com/pr0xylife/status/1539320429281615872

[11] https://twitter.com/max_mal_/status/1534220832242819072

[12] https://twitter.com/1zrr4h/status/1534259727059787783?lang=en

[13] https://isc.sans.edu/diary/rss/28728

[14] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

Credit to:  Hanah Darley, Cambridge Analyst Team Lead and Head of Threat Research and Sam Lister, Senior Cyber Analyst

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

Default blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ