N-Day Vulnerabilities: Minimizing Risk With Self-Learning AI
See how Darktrace PREVENT, a self-learning AI program, can help your security team measure risk & address N-Day vulnerabilities before an attack occurs.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Share
27
Jul 2022
Responding to the latest critical vulnerability has become a regular routine in the daily life of cyber security professionals.
In the last two years, there has been a carousel of patches for vulnerabilities affecting email servers (ProxyLogon), remote working infrastructure (Atlassian Confluence), third party tools (Kaseya), and supply chain software (Log4j).
In the days following the public disclosure of such vulnerabilities, any associated exploit is referred to as an “N-day”. The release of a patch marks day 1, but over the following days any unpatched systems are at risk of attack from exploits which target the vulnerability. This contrasts with zero-day attacks, which exploit vulnerabilities for which no patch is available, often because knowledge of the vulnerability isn’t yet in the public domain.
N-days occupy a unique space in cyber risk analysis. Headline-grabbing zero-day attacks have the potential to be high impact, but in reality such attacks are rare and have a low likelihood. A more common cyber-attack, using commodity malware which has been well documented in the wild, may have a high likelihood but will have a low impact when faced with a mature security stack. But in the hours and days following the publication of a new vulnerability, there is a high likelihood of a high impact attack against an organization which makes use of a new exploit.
Table 1: A potential qualitative risk analysis comparing three cyber risks: a threat group targets an organization using either commodity malware, a zero-day exploit, or by leveraging an N-day vulnerability.
After a critical vulnerability is published, security teams battle against time and resourcing constraints to apply the appropriate patch or patches, all the while trying to protect assets without a playbook of what an attack may look like. Darktrace has found that 85% of high-risk vulnerabilities are not patched within one week and 70% remain unpatched after a month. In the meantime, threat groups have become armed with a new attack method: an N-day exploit.
In their latest research, Darktrace’s Inside the SOC team detail how the techniques used by Self-Learning AI to detect zero-day attacks can also be leveraged by organizations to Detect and Respond to N-day attacks.
But with Darktrace PREVENT, defenders can go one step further, enabling security teams to harden defenses before the next attack vector is even published.
The Darktrace PREVENT product family empowers defenders to model likely attack paths, intelligently prioritize critical servers or highly exposed people in the organization, and test vulnerable pathways by emulating real-world attacks. Darktrace PREVENT then feeds data back into Darktrace DETECT + RESPOND to harden defenses around critical attack paths or assets and further enhance cyber resilience. For example, if Darktrace PREVENT discovers that a critical database is serving high-risk users, it can feed that information back into Darktrace DETECT, which in turn increases the level of scrutiny around that asset.
Figure 1: Visualising Darktrace’s technology vision of a Cyber AI Loop: four interconnected AI engines continuously enhancing each other’s capabilities.
While Darktrace DETECT + RESPOND wrap what amounts to an ‘AI safety blanket’ around vulnerable assets and attack paths, Darktrace PREVENT presents prioritized recommendations for long term risk mitigation. Stretched security teams therefore know, based on Darktrace’s deep and evolving understanding of the entire business, where to focus their time and resources in order to reduce risk to the greatest extent.
As a result, when the next N-day vulnerability comes around, defenders have the confidence that any prospective impact has already been minimized and the potential cyber risk is low.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
How a Leading Bank is Prioritizing Risk Management to Power a Resilient Future
This influential southern European bank has strengthened its cyber resilience with Darktrace, unifying its risk landscape, reducing manual effort, and empowering teams to proactively prioritize and mitigate exposures with confidence.
Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents
This blog introduces new innovations in Darktrace / Proactive Exposure Management that bring precision and clarity to vulnerability prioritization. Learn how No-Telemetry Endpoints provide real device context without network data and how new Cost-Benefit Analysis capabilities quantify patching ROI—helping teams cut noise, act faster, and strengthen proactive risk management.
Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web
This blog explores how Continuous Threat Exposure Management (CTEM) is reshaping defense strategies and how new Darktrace / Attack Surface Management capabilities, including Exploit Prediction Assessment and Deep & Dark Web Monitoring, help organizations turn CTEM from strategy into action.
ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。
技術分析
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。
このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。
React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly
Introduction
Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.
The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.
Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.
Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.
For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.
Cloud insights
In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction. No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.
The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.
Cloud Case Study
In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.
Initial Access
Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.
Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.
Payload execution
Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.
Command-and-Control (C2)
Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.
Cryptominers deployment and re-exploitation
Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.
The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).
The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.
Financial sector spotlight
During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.
The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.
EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.
Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.
For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.
Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)
Edited by Ryan Traill (Analyst Content Lead)
Appendices
Indicators of Compromise (IoCs)
146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark