ブログ
/
/
January 9, 2019

Insider Analysis of Emotet Malware

Uncover the secrets of Emotet with our latest Darktrace expert analysis. Learn how to identify and understand trojan horse attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2019

While both traditional security tools and the attacks against them continue to improve, advanced cyber-criminals are increasingly exploiting the weakness inherent to any organization’s security posture: its employees. Designed to mislead such employees into compromising their devices, computer trojans are now rapidly on the rise. In 2018, Darktrace detected a 239% year-on-year uptick in incidents related specifically to banking trojans, which use deception to harvest the credentials of online banking customers from infected machines. And one banking trojan in particular, Emotet, is among the costliest and most destructive malware variants currently imperilling governments and companies worldwide.

Emotet is a highly sophisticated malware with a modular architecture, installing its main component first before delivering additional payloads. Further increasing its subtlety is the fact that Emotet is considered to be ‘polymorphic malware’, since it constantly changes its identifiable features to evade detection by antivirus products. And, as will be subsequently discussed in greater detail, Emotet has advanced persistence techniques and worm-like self-propagation abilities, which render it uniquely resilient and dangerous.

Since its launch in 2014, Emotet has been adapted and repurposed on numerous occasions as its targets have diversified. Initially, Emotet’s primary victims were German banks, from which the malware was designed to steal financial information by intercepting network traffic. By this past year’s end, Emotet had spread far and wide while shifting focus to U.S. targets, resulting in permanently lost files, costly business interruptions, and serious reputational harm.

How Emotet works

(Image courtesy of US-CERT)

Emotet is spread by targeting Windows-based systems via sophisticated phishing campaigns, employing social engineering techniques to fool users into believing that the malware-laden emails are legitimate. For instance, the latest versions of Emotet were delivered by way of Thanksgiving-related emails, which invited their American recipients to open an apparently innocuous Thanksgiving card:

These emails contain Microsoft Word documents that are either linked or attached directly. The Word files, in turn, act as vectors for malicious macros, which must be explicitly enabled by the user to be executed. For security reasons, running macros by default is disabled in most of the latest Microsoft application versions, meaning that the cyber-criminals responsible must resort to tricking users in order to enable them — in this case, by enticing them with the Thanksgiving card.

Once the macros are enabled, the Word file is executed and a PowerShell command is activated to retrieve the main Emotet component from compromised servers. The trojan payload is then downloaded and executed into the victim’s system. As mentioned above, Emotet payloads are polymorphic, often allowing them to slip past conventional security tools undetected.

How Emotet persists and propagates

Once Emotet has been executed on the victim’s device, it begins deploying itself with two main objectives: (1) achieving persistence and (2) spreading to more machines. To achieve the first aim, which involves resisting a reboot and various attempts at removal, Emotet does the following:

  • Creates scheduled tasks and registry key entries, ensuring its automatic execution during every system start-up.
  • Registers itself by creating files that have randomly generated names in system root directories, which are run as Windows services.
  • Typically stores payloads in paths located off AppData\Local and AppData\Roaming directories that it masks with names that appear legitimate, such as ‘flashplayer.exe’.

Emotet’s second key goal is that of spreading across local networks and beyond in order to infect as many machines as possible. To this end, Emotet first gathers information on both the victim’s system itself and the operating system it uses. Following this reconnaissance stage, it establishes encrypted command and control communications (C2) with its parent infrastructure before determining which payloads it will deliver. After reporting a new infection, Emotet downloads modules from the C2 servers, including:

  • WebBrowserPassView: A tool that steals passwords from most common web browsers like Chrome, Safari, Firefox and Internet Explorer.
  • NetPass.exe: A legitimate tool that recovers all the network passwords stored on the system for the current logged-on user.
  • MailPassView: A tool that reveals passwords and account details for popular email clients, such as Hotmail, Gmail, Microsoft Outlook, and Yahoo! Mail.
  • Outlook PST scraper: A module that searches Outlook’s messages to obtain names and email addresses from the victim’s Outlook account.
  • Credential enumerator: A module that enumerates network resources and attempts to gain access to other machines via SMB enumeration and brute-forcing connections.
  • Banking trojans: These include Dridex, IceID, Zeus Panda, Trickbot and Qakbot, all of which harvest banking account information via browser monitoring routines.

Whilst the WebBrowserPassView, NetPass.exe and MailPassView modules are able to steal the compromised user’s credentials, the PST scraper module can ransack the user’s contact list of friends, family members, colleagues and clients, enabling Emotet to self-propagate by sending phishing emails to those contacts. And because such emails are sent from the hijacked accounts of known acquaintances and loved ones, their recipients are more likely to open their infected attachments and links.

Emotet’s other self-propagation method is via brute-forcing credentials using various password lists, with the intent of gaining access to other machines within the network. When unsuccessful, the malware’s repeated failed login attempts can cause users to become locked out of their accounts, and when successful, the victims may become infected without even clicking on a malicious link or attachment. These tactics have collectively made Emotet remarkably durable and widespread. Indeed, in line with Darktrace’s discovery that incidents related to banking trojans have increased by 239% from 2017 to 2018, Emotet alone recorded a 39% increase, and the worst may be yet to come.

How AI fights back

Emotet presents significant challenges for traditional security tools, both because it exploits the ubiquitous vulnerability of human error, and because it is designed specifically to bypass endpoint solutions. Yet unlike such traditional tools, Darktrace leverages unsupervised machine learning algorithms to detect cyber-threats that have already infiltrated the network. Modelled after the human immune system, Darktrace AI works by learning the individual ‘pattern of life’ of every user, device, and network that it safeguards. From this ever-evolving sense of ‘self,’ Darktrace can differentiate between normal and anomalous behavior, allowing it to identify cyber-attacks in much the same way that our immune system spots harmful germs.

Recently, Darktrace’s AI models managed to detect a machine on a clients’ network that was experiencing active signs of an Emotet infection. The device was observed downloading a suspicious file and, shortly thereafter, began beaconing to a rare external destination, likely reporting the infection to a C2 server.

The device was then observed moving laterally across the network by performing brute force activities. In fact, Darktrace detected thousands of Kerberos failed logins, including to administrative accounts, as well as multiple SMB session failures that used a range of common usernames, such as ‘admin’ and ‘exchange’. Below is a graph showing the SMB and Kerberos brute-force activity on the breached device:

In addition to the brute-forcing activity performed by the credential enumerator module, Darktrace also detected another payload that was potentially functioning as an email spammer. The infected machine started to make a high number of outgoing connections over common email ports. This activity is consistent with Emotet’s typical spreading behavior, which revolves around sending emails to the victim’s hijacked email contacts. Below is an image of Darktrace models breached during the reported Emotet infection:

By forming a comprehensive understanding of normalcy, Darktrace can flag even the most minute anomalies in real time, thwarting subtle threats like Emotet that have already circumvented the network perimeter. To counter such advanced banking trojans, cyber AI defenses like Darktrace have become an organizational necessity.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 6, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ