ブログ
/
Network
/
August 22, 2023

Darktrace’s Detection of Unattributed Ransomware

Leveraging anomaly-based detection, we successfully identified an ongoing ransomware attack on the network of a customer and the activity that preceded it.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Aug 2023

In the current threat landscape, much of the conversation around ransomware focusses on high-profile strains and notorious threat groups. While organizations and their security teams are justified in these concerns, it is important not to underestimate the danger posed by smaller scale, unattributed ransomware attacks.

Unlike attributed ransomware strains, there are often no playbooks or lists of previously observed indicators of compromise (IoCs) that security teams can consult to help them shore up their cyber defenses. As such, anomaly detection is critical to ensure that emerging threats can be detected based on their abnormality on the network, rather than relying heavily on threat intelligence.

In mid-March 2023, a Darktrace customer requested analytical support from the Darktrace Security Operations Center (SOC) after they had been hit by a ransomware attack a few hours earlier. Darktrace was able to uncover a myriad of malicious activity that preceded the eventual ransomware deployment, ultimately assisting the customer to identify compromised devices and contain the ransomware attack.

Attack Overview

While there were a small number of endpoints that had been flagged as malicious by open-source intelligence (OSINT), Darktrace DETECT™ focused on the unusualness of the activity surrounding this emerging ransomware attack. This provided unparalleled visibility over this ransomware attack at every stage of the cyber kill chain, whilst also revealing the potential origins of the compromise which came months area.

Initial Compromise

Initial investigation revealed that several devices that Darktrace were observed performing suspicious activity had previously engaged in anomalous behavior several months before the ransomware event, indicating this could be a part of a repeated compromise or the result of initial access brokers.

Most notably, in late January 2023 there was a spike in unusual activity when some of the affected devices were observed performing activity indicative of network and device scanning.

Darktrace DETECT identified some of the devices establishing unusually high volumes of internal failed connections via TCP and UDP, and the SMB protocol. Various key ports, such as 135, 139, and 445, were also scanned.

Due to the number of affected devices, the exact initial attack vector is unclear; however, one likely scenario is associated with an internet-facing DNS server. Towards the end of January 2023, the server began to receive unusual TCP DNS requests from the rare external endpoint, 103.203.59[.]3, which had been flagged as potentially malicious by OSINT [4]. Based on a portion of the hostname of the device, dc01, we can assume that this server served as a gateway to the domain controller. If a domain controller is compromised, a malicious actor would gain access to usernames and passwords within a network allowing attackers to obtain administrative-level access to an organization’s digital estate.

Around the same time as the unusual TCP DNS requests, Darktrace DETECT observed the domain controller engaging in further suspicious activity. As demonstrated in Figure 1, Darktrace recognized that this server was not responding to common requests from multiple internal devices, as it would be expected to. Following this, the device was observed carrying out new or uncommon Windows Management Instrumentation (WMI) activity. WMI is typically used by network administrators to manage remote and local Windows systems [3].

Figure 1: Device event log depicting the possible Initial attack vector.


Had Darktrace RESPOND™ been enabled in autonomous response mode, it would have to blocked connections originating from the compromised internal devices as soon as they were detected, while also limiting affected devices to their pre-established patterns of file to prevent them from carrying out any further malicious activity.

Darktrace subsequently observed multiple devices establishing various chains of connections that are indicative of lateral movement activity, such as unusual internal RDP and WMI requests. While there may be devices within an organization that do regularly partake these types of connections, Darktrace recognized that this activity was extremely unusual for these devices.

Darktrace’s Self-Learning AI allows for a deep understanding of customer networks and the devices within them. It’s anomaly-based threat detection capability enables it to recognize subtle deviations in a device’s normal patterns of behavior, without depending on known IoCs or signatures and rules to guide it.

Figure 2: Observed chain of possible lateral movement.


Persistence

Darktrace DETECT observed several affected devices communicating with rare external endpoints that had also been flagged as potentially malicious by OSINT tools. Multiple devices were observed performing activity indicative of NTLM brute-forcing activity, as seen in the Figure 3 which highlights the event log of the aforementioned domain controller. Said domain controller continuously engaged in anomalous behavior throughout the course of the attack. The same device was seen using a potentially compromise credential, ‘cvd’, which was observed via an SMB login event.

Figure 3: Continued unusual external connectivity.


Affected devices, including the domain controller, continued to engage in consistent communication with the endpoints prior to the actual ransomware attack. Darktrace identified that some of these malicious endpoints had likely been generated by Domain Generation Algorithms (DGA), a classic tactic utilized by threat actors. Subsequent OSINT investigation revealed that one such domain had been associated with malware such as TrojanDownloader:Win32/Upatre!rfn [5].

All external engagements were observed by Darktrace DETECT and would have been actioned on by Darktrace RESPOND, had it been configured in autonomous response mode. It would have blocked any suspicious outgoing connections originating from the compromised devices, thus preventing additional external engagement from taking place. Darktrace RESPOND works in tandem with DETECT to autonomously take action against suspicious activity based on its unusualness, rather than relying on static lists of ‘known-bads’ or malicious IoCs.

Reconnaissance

On March 14, 2023, a few days before the ransomware attack, Darktrace observed multiple internal devices failing to establish connections in a manner that suggests SMB, RDP and network scanning. Among these devices once more was the domain controller, which was seen performing potential SMB brute-forcing, representing yet another example of malicious activity carried out by this device.

Lateral Movement

Immediately prior to the attack, many compromised devices were observed mobilizing to conduct an array of high-severity lateral movement activity. Darktrace detected one device using two administrative credentials, namely ‘Administrator’ and ‘administrator’, while it also observed a notable spike in the volume of successful SMB connections from the device around the same time.

At this point, Darktrace DETECT was observing the progression of this attack along the cyber kill chain. What had started as internal recognisance, had escalated to exploitation and ensuing command-and-control activity. Following an SMB brute-force attempt, Darktrace DETECT identified a successful DCSync attack.

A DCSync attack occurs when a malicious actor impersonates a domain controller in an effort to gather sensitive information, such as user credentials and passwords hashes, by replicating directory services [1]. In this case, a device sent various successful DRSGetNCChanges operation requests to the DRSUAPI endpoint.

Data Exfiltration

Around the same time, Darktrace detected the compromised server transferring a high volume of data to rare external endpoints associated with Bublup, a third-party project management application used to save and share files. Although the actors attempted to avoid the detection of security tools by using a legitimate file storage service, Darktrace understood that this activity represented a deviation in this device’s expected pattern of life.

In one instance, around 8 GB of data was transferred, and in another, over 4 GB, indicating threat actors were employing a tactic known as ‘low and slow’ exfiltration whereby data is exfiltrated in small quantities via multiple connections, in an effort to mask their suspicious activity. While this tactic may have evaded the detection of traditional security measures, Darktrace’s anomaly-based detection allowed it to recognize that these two incidents represented a wider exfiltration event, rather than viewing the transfers in isolation.

Impact

Finally, Darktrace began to observe a large amount of suspicious SMB activity on the affected devices, most of which was SMB file encryption. DETECT observed the file extension ‘uw9nmvw’ being appended to many files across various internal shares and devices. In addition to this, a potential ransom note, ‘RECOVER-uw9nmvw-FILES.txt’, was detected on the network shortly after the start of the attack.

Figure 4: Depiction of the high-volume of suspicious SMB activity, including file encryption.


Conclusion

Ultimately, this incident show cases how Darktrace was able to successfully identify an emerging ransomware attack using its unrivalled anomaly-based detection capabilities, without having to rely on any previously established threat intelligence. Not only was Darktrace DETECT able to identify the ransomware at multiple stages of the kill chain, but it was also able to uncover the anomalous activity that took place in the buildup to the attack itself.

As the attack progressed along the cyber kill chain, escalating in severity at every juncture, DETECT was able to provide full visibility over the events. Through the successful identification of compromised devices, anomalous administrative credentials usage and encrypted files, Darktrace was able to greatly assist the customer, ensuring they were well-equipped to contain the incident and begin their incident management process.

Darktrace would have been able to aid the customer even further had they enabled its autonomous response technology on their network. Darktrace RESPOND would have taken targeted, mitigative action as soon as suspicious activity was detected, preventing the malicious actors from achieving their goals.

Credit to: Natalia Sánchez Rocafort, Cyber Security Analyst, Patrick Anjos, Senior Cyber Analyst.

MITRE Tactics/Techniques Mapping

RECONNAISSANCE

Scanning IP Blocks  (T1595.001)

RECONNAISSANCE

Vulnerability Scanning  (T1595.002)

IMPACT

Service Stop  (T1489)

LATERAL MOVEMENT

Taint Shared Content (T1080)

IMPACT

Data Encrypted for Impact (T1486)

INITIAL ACCESS

Replication Through Removable Media (T1200)

DEFENSE EVASION

Rogue Domain Controller (T1207)

COMMAND AND CONTROL

Domain Generation Algorithms (T1568.002)

EXECUTION

Windows Management Instrumentation (T1047)

INITIAL ACCESS

Phishing (T1190)

EXFILTRATION

Exfiltration Over C2 Channel (T1041)

IoC Table

IoC ----------- TYPE ------------- DESCRIPTION + PROBABILITY

CVD --------- credentials -------- Possible compromised credential

.UW9NMVW - File extension ----- Possible appended file extension

RECOVER-UW9NMVW-FILES.TXT - Ransom note - Possible ransom note observed

84.32.188[.]186 - IP address ------ C2 Endpoint

AS.EXECSVCT[.]COM - Hostname - C2 Endpoint

ZX.EXECSVCT[.]COM - Hostname - C2 Endpoint

QW.EXECSVCT[.]COM - Hostname - C2 Endpoint

EXECSVCT[.]COM - Hostname ------ C2 Endpoint

15.197.130[.]221 --- IP address ------ C2 Endpoint

AS59642 UAB CHERRY SERVERS - ASN - Possible ASN associated with C2 Endpoints

108.156.28[.]43

108.156.28[.]22

52.84.93[.]26

52.217.131[.]241

54.231.193[.]89 - IP addresses - Possible IP addresses associated with data exfiltration

103.203.59[.]3 -IP address ---- Possible IP address associated with initial attack vector

References:

[1] https://blog.netwrix.com/2021/11/30/what-is-dcsync-an-introduction/

[2] https://www.easeus.com/computer-instruction/delete-system32.html#:~:text=System32%20is%20a%20folder%20on,DLL%20files%2C%20and%20EXE%20files.

[3] https://www.techtarget.com/searchwindowsserver/definition/Windows-Management-Instrumentation#:~:text=WMI%20provides%20users%20with%20information,operational%20environments%2C%20including%20remote%20systems.

[4] https://www.virustotal.com/gui/ip-address/103.203.59[.]3

[5] https://otx.alienvault.com/indicator/ip/15.197.130[.]221

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

Default blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ