Blog
/
/
May 14, 2019

[Part 1] 10 Cyber Hygiene Issues Leading to a Security Breach

Spotting cyber hygiene issues caused by a lapse of attention requires AI tools that alert critical changes to network activity. Read part one here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
May 2019

For as long as people have sought to protect their assets from intrusion, they have safeguarded those assets behind ever more formidable walls, from castle walls made of stone to firewalls comprised of code. Yet no matter how impenetrable such fortifications appear, motivated attackers will inevitably find a way to bypass them. Build a 50-foot fence, and the enemy will bring a 50-foot ladder. Install state-of-the-art endpoint security on every employee’s computer, and cyber-criminals will infiltrate via the smart refrigerator in the office kitchen.

Needless to say, reinforcing the perimeter is still a good idea. Just as a castle in ruins makes a poor home for a king, so too do weak endpoint defenses put intellectual property and sensitive data at risk. The reality, however, is that digital environments are exponentially more difficult to wall off than physical ones, given the sheer number of applications and users that can compromise an entire network with just a single vulnerability or oversight. Improving a company’s cyber hygiene is therefore a continual responsibility, the nature of which perpetually changes as the business evolves.

Because even flawless cyber hygiene isn’t guaranteed to keep external attackers — let alone malicious insiders — from breaching the perimeter, leading companies and governments have turned to cyber AI technologies. Cyber AI works by learning the particular behaviors of a network and its users, allowing it to pick up on the subtly anomalous activity associated with an already infected device. Such technologies have shined a light on ten of the most commonly exploited cyber hygiene issues, five of which are examined below. And whereas there is no silver bullet when it comes to securing the enterprise online, patching these holes in the perimeter is nevertheless a critical first step.

Issue #1: Using SMBv1 — for anything

Server Message Block (SMB) is a very common application layer protocol that provides shared access to files, printers, and serial ports to devices in a network. The latest version, SMBv3, was developed with security in mind, whereas the original version, SMBv1, is more than three decades old and — in Microsoft’s own words — “was designed for a world that no longer exists[;] a world without malicious actors.” As a result, Microsoft has long implored users to stop using it in the strongest possible terms.

However, many of these users still have not disabled the protocol on operating systems older than Windows 8.1 and Windows Server 2012 R2, which do not allow SMB1 to be removed. The 2017 WannaCry ransomware attack abused the famous exploit EternalBlue in SMBv1 to infect Windows machines and move laterally in Windows environments, precipitating billions of dollars in global losses. Furthermore, SMBv1 allows NTLM logins using the anonymous credential by default, while successful anonymous logins can allow attackers to enumerate the target device for more information.

In light of the serious security risks that SMBv1 introduces, Darktrace flags its usage as threatening with the following models:

  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Compliance / SMB Version 1 Usage

Issue #2: SMB services exposed to the internet

As mentioned above, SMB allows devices in a network to communicate with one another for a variety of purposes — functionalities that render it a complex protocol with many known vulnerabilities. Users are consequently highly discouraged from allowing connections from the internet to internal devices via any version of SMB — not just SMBv1.

Darktrace detected this poor hygiene practice in early 2019, when it observed the use of SMB from external IP addresses connecting to an internal device. The device happened to be a Domain Controller (DC), a server which manages network security and is responsible for user authentication. Due to the critical network function performed by this server, it is a high value target for cyber-criminals, meaning that any external connections should be limited to only essential administrative activity. In this incident, the external device was seen accessing the DC via SMBv1 and performing anonymous login. Fortunately, Darktrace AI detected the potential compromise with the model Compliance / External Windows Communications.

Issue #3: RDP services exposed to the internet

Microsoft’s proprietary Remote Desktop Protocol (RDP) provides a remote connection to a network-connected computer, affording users significant control over another device and its resources. Such extensive capabilities represent the holy grail for attackers, whether they seek to gain an initial foothold in the network, access restricted content, or directly drop malware on the controlled computer. Exposing devices with RDP services to the internet therefore creates a significant vulnerability in the network perimeter, as passwords and user credentials are liable to be brute-forced by those with malign intent.

Last month, Darktrace’s cyber AI detected a large number of incoming connections over the RDP protocol to a customer’s internet-facing device — possible indicators of a brute-force attack. While this activity might have been benign under different circumstances, the AI’s understanding of ‘self’ versus ‘not self’ for the particular device in question enabled it to flag the connections as anomalous, since they breached its Compliance / Incoming RDP from Rare Endpoints model.

By investigating further with Darktrace’s device tracking capability, we can see that the computer also breached several other AI models, including Compliance / Crypto Currency Mining Activity, Compliance / Outbound RDP, and Compromise / Beaconing Activity to External Rare. These breaches suggest that the attackers might have sought to use the computer to plant crypto-mining modules on other network-connected devices.

Models that the device breached within three days

Issue #4: Data uploads to unapproved cloud services

No innovation has antiquated the perimeter-only approach to cyber security more than cloud computing, since cloud and hybrid infrastructures have nebulous borders at best. Nevertheless, there are a number of bad cyber hygiene habits that make bypassing perimeter defenses much easier, including employees who upload data to close storage providers that are not on an organization’s approved list. Whether done maliciously or inadvertently, this decision prevents organizations from gaining any visibility over that data being transferred across the globe.

Darktrace cyber AI detects such unauthorized data movements with the following models:

  • Anomalous Connection / Data Sent To New External Device
  • Unusual Activity / Unusual External Data Transfer

Issue #5: Weak password usage and storage

Among the most common and most avoidable cyber-attacks are those that exploit systems with weak passwords, which can be breached by brute-force or dictionary attacks. Yet stronger, more complex passwords introduce a separate problem: because they are harder to be remember, users tend to store these passwords in sometimes unsafe locations. Whereas passwords housed in encrypted mediums such as password managers are relatively secure, many users instead save them in cleartext. Several modern strains of malware possess the ability to comb through the network in search of possible files which contains passwords, rendering this a critical vulnerability.

Darktrace has a set of models to spot such attempts at password guessing:

  • Device / SMB Session Bruteforce
  • Unusual Activity / Large Volume of Kerberos Failures
  • User / Kerberos Password Bruteforce
  • SaaS / Login Bruteforce Attempt

Darktrace also has a set of models that flag anomalous password storage or access:

  • Compliance / Sensitive Terms in Unusual SMB Connection
  • Compliance / Possible Unencrypted Password Storage
  • SaaS / Unusual SaaS Sensitive File Access

Read the second part: Part two — The perils of convenience

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI