Blog
/
/
October 13, 2020

Protecting Industrial Control Systems in the Cloud

The impact of water utility firms in the UK moving SCADA systems to the cloud. Explore ICSaaS and its security implications in practice.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Oct 2020

Transitions of OT to managed cloud services

Last month, a major water utilities firm in the UK revealed plans to move a significant part of their SCADA system to the cloud. This is one of the most high-profile transitions of OT to managed cloud services to date.

Though moving Industrial Control Systems (ICS) to the cloud has been theoretically possible for at least 10 years, the associated risks have meant that uptake has been slow. Operational technology is often bespoke and has traditionally been isolated from the Internet, and so moving OT systems to the cloud can impact reliability, performance, and security. Industrial Control Systems are high-stake environments: the slightest period of downtime can have significant ramifications for the safety of workers and the business as a whole.

These considerations have traditionally led most organizations to conclude that the benefits of moving ICS to the cloud — namely, making it cheaper and easier to manage, and improving its availability — are outweighed by the risks. Even though workers may be able to remotely control equipment on the factory floor, for example, the threat of those with malicious intent gaining access to the same protocols is a strong deterrent for organizations to hold back on digital transformation in this area.

However, the conditions brought about by the pandemic this year have brought unique challenges to the management of SCADA systems on site, causing organizations to consider secure ways to slowly transition these environments to the cloud.

But as OT converges with IT in the cloud, so too do their respective risks. Only complete and unified visibility across both IT and OT will allow companies to accelerate their digital transformation whilst at the same time managing the associated risks of digitization and of their increasingly dynamic workforces.

Figure 1: Darktrace provides a unified view of IT/OT.

ICSaaS

What will this ICS cloud infrastructure look like in practice? ICS applications, services and databases, such as the Historian, would be hosted in the cloud, with PLCs feeding data directly to the cloud. With this underway, workstations can access the ICS data remotely. The attack surface of SaaS for ICS — or ‘ICSaaS’ — would end up looking more similar to common SaaS networks than to a traditional SCADA/ICS network.

Simply put, moving industrial systems to the cloud renders traditional security concepts obsolete. The network segmentation and hierarchy recommended by the Purdue model, for instance, will become less relevant as more high-stake environments embrace digital transformation.

Figure 2: A schematic of ICSaaS cloud infrastructure

Security concerns with ICS & Cloud

The usual security concerns associated with SaaS carry over to ICS environments as they converge with the cloud. With ICSaaS, the data involved in industrial processes can be accessed from anywhere, raising questions about data security, as well as compliance and regulation.

Further, with ICSaaS, there is a loss of visibility and control over network. Not only does the workforce become increasingly dynamic, no longer bound to the HQ, but organizations also depend on a wider range of technologies on a daily basis – which means more work for security teams trying to keep up with these variables. These factors increase risk from insider threat, as well of a host of other attack vectors that emerge when industrial operations are being handled by workers who are not physically present in the on-prem workspaces.

As industrial workers begin to carry out operations in the cloud, siloed and static security controls will succumb to the same pitfalls as they have in today’s dynamic workforce: their hard-coded, pre-defined rules and signatures are not designed to adapt with sudden transformation, and so they will be forced into either default ‘inclusion listing’, or will produce unworkable numbers of ‘false positives’, impacting operations.

ICS security teams require a fundamentally different approach. Hundreds of organizations in the industrial space are turning to self-learning, AI-powered technology that continuously adapts and learns patterns of behavior across the digital ecosystem – from ICS to the cloud and beyond – in order to distinguish ‘strange but benign’ behavior as well as ‘strange but threatening’ activity indicative of a cyber-threat.

Technology and protocol agnostic, Darktrace/OT is uniquely positioned to meet the challenge of securing ICS in the cloud. The AI technology learns on the job, understanding ‘normal’ for every user, device and controller. This enables it to detect anomalies that signal an intrusion. Darktrace’s Cyber AI Analyst will then automatically launch an investigation and produce a natural-language summary of the security incident ready for IT security teams or ICS engineers to action.

Figure 3: Possible threats to an ICSaaS cloud infrastructure

ICSaaS and artificial intelligence

As ICSaaS comes of age, attackers will exploit never-before-seen attack vectors. The combined challenges of cloud security and ICS security — loss of visibility, communication barriers, varying technical knowledge, differing capabilities, misaligned objectives — make securing ICSaaS cloud infrastructure a considerable challenge.

Attacks seen in the wild recently, such as the EKANS ransomware, have managed to breach the IT and OT divide. These blind spots, however, can be illuminated by a unified platform approach to securing industrial and IT systems. Monitoring activity across the entire digital estate allows a single system to recognize when malicious activity in one area might become a precursor to compromise in another, more critical, area.

By moving away from rules and signatures of pre-defined threats and learning digital ‘patterns of life’ across the organization, Darktrace’s AI represents a step-change in cyber security. Introducing self-learning AI systems into the security infrastructure allows for real-time detection and investigation into threats across the entire digital estate. This capability will enable more archaic OT systems to go through digital transformation whilst managing the risks brought about by ICSaaS.

Credit to: Darktrace analyst Oakley Cox for his insights on the above investigation.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI