Blog
/
/
April 15, 2021

AI Neutralizes Hafnium Cyber Attack in December 2020

Protect your business from cyber attacks with AI technology. Learn how Darktrace neutralized the Hafnium attack against Exchange servers in December 2020.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Apr 2021

In early December 2020, Darktrace AI autonomously detected and investigated a sophisticated cyber-attack that targeted a customer’s Exchange server. On March 2, 2021, Microsoft disclosed an ongoing campaign by the Hafnium threat actor group leveraging Exchange server zero-days.

Based on similarities in techniques, tools and procedures (TTPs) observed, Darktrace has now assessed with high confidence that the attack in December was the work of the Hafnium group. Although it is not possible to determine whether this attack leveraged the same Exchange zero-days as reported by Microsoft, the finding suggests that Hafnium’s campaign was active several months earlier than assumed.

As a result, organizations may want to go back as far as early December 2020 to check security logs and tools for signs of initial intrusion into their Internet-facing Exchange servers.

As Darktrace does not rely on rules or signatures, it doesn’t require a constant cloud connection. Most customers therefore operate our technology themselves, and we don’t centrally monitor their detections.

At the time of detection in December, this was one of many uncategorized, sophisticated intrusions that affected only a single customer, and was not indicative of a broader campaign.

This means that while we protect our customers from individual intrusions, we are not in a position to do global campaign tracking like other companies which focus primarily on threat intelligence and threat actor tracking.

In this blog, we will analyze the attack to aid organizations in their ongoing investigations, and to raise awareness that the Hafnium campaign may have been active for longer than previously disclosed.

Overview of the Exchange attack

The intrusion was detected at an organization in the critical national infrastructure sector in South Asia. One hypothesis is that the Hafnium group was testing out and refining its TTPs, potentially including the Exchange server exploit, before running a broad-scale campaign against Western organizations in early 2021.

The threat actor used many of the same techniques that were observed in the later Hafnium attacks, including the deployment of the low-activity China Chopper web shell, quickly followed by post-exploitation activity – attempting to move laterally and spread to critical devices in the network.

The following analysis demonstrates how Darktrace’s Enterprise Immune System detected the malicious activity, how Cyber AI Analyst automatically investigated on the incident and surfaced the alert as a top priority, and how Darktrace RESPOND (formerly known as 'Antigena') would have responded autonomously to shut down the attack, had it been in active mode.

All the activity took place in early December 2020, almost three months before Microsoft released information about the Hafnium campaign.

Figure 1: Timeline of the attack from early December 2020

Initial compromise

Unfortunately, the victim organization did not keep any logs or forensic artefacts from their Exchange server in December 2020, which would have allowed Darktrace to ascertain the exploit of the zero-day. However, there is circumstantial evidence suggesting that these Exchange server vulnerabilities were abused.

Darktrace observed no signs of compromise or change in behavior from the Internet-facing Exchange server – no prior internal admin connections, no broad-scale brute-force attempts, no account takeovers, no malware copied to the server via internal channels – until all of a sudden, it began to scan the internal network.

While this is not conclusive evidence that no other avenue of initial intrusion was present, the change in behavior on an administrative level points to a complete takeover of the Exchange server, rather than the compromise of a single Outlook Web Application account.

To conduct a network scan from an Exchange server, a highly privileged, operating SYSTEM-level account is required. The patch level of the Exchange server at the time of compromise appears to have been up-to-date, at least not offering a threat actor the ability to target a known vulnerability to instantly get SYSTEM-level privileges.

For this reason, Darktrace has inferred that the Exchange server zero-days that became public in early March 2021 were possibly being used in this attack observed in early December 2020.

Internal reconnaissance

As soon as the attackers gained access via the web shell, they used the Exchange server to scan all IPs in a single subnet on ports 80, 135, 445, 8080.

This particular Exchange server had never made such a large number of new failed internal connections to that specific subnet on those key ports. As a result, Darktrace instantly alerted on the anomalous behavior, which was indicative of a network scan.

Autonomous Response

Darktrace RESPOND was in passive mode in the environment, so was not able to take action. In active mode, it would have responded by enforcing the previously learned, normal ‘pattern of life’ of the Exchange server – allowing the server to continue normal business operations (sending and receiving emails) but preventing the network scan and any subsequent activity. These actions would have been carried out via various integrations with the customer’s existing security stack, including Firewalls and Network Access Controls.

Specifically, when the network scanning started, the ‘Antigena Network Scan Block’ was triggered. This means that for several hours, Darktrace RESPOND (Antigena) would have blocked any new outgoing connections from the Exchange server to the scanned subnet on port 80, 135, 445, or 8080, preventing the infected Exchange server from conducting network scanning.

As a result, the attackers would not have been able to conclude anything from their reconnaissance — all their scanning would have returned closed ports. At this point, they would need to stop their attack or resort to other means, likely triggering further detections and further Autonomous Response.

The network scan was the first step touching the internal network. This is therefore a clear case of how Darktrace RESPOND can intercept an attack in seconds, acting at the earliest possible evidence of the intrusion.

Lateral movement

Less than an hour after the internal network scan, the compromised Exchange server was observed writing further web shells to other Exchange servers via internal SMB. Darktrace alerted on this as the initially compromised Exchange server had never accessed the other Exchange servers in this fashion over SMB, let alone writing .aspx files to Program Files remotely.

A single click allowed the security team to pivot from the alert into Darktrace’s Advanced Search, revealing further details about the written files. The full file path for the newly deployed web shells was:

Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\owa\auth\Current\themes\errorFS.aspx

The attackers thus used internal SMB to compromise further Exchange servers and deploy more web shells, rather than using the Exchange zero-day exploit again to achieve the same goal. The reason for this is clear: exploits can often be unstable, and an adversary would not want to show their hand unnecessarily if it could be avoided.

While the China Chopper web shell has been deployed with many different names in the past, the file path and file name of the actual .aspx web shell bear very close resemblance to the Hafnium campaign details published by Microsoft and others in March 2021.

As threat actors often reuse naming conventions / TTPs in coherent campaigns, it again indicates that this particular attack was in some way part of the broader campaign observed in early 2021.

Further lateral movement

Minutes later, the attacker conducted further lateral movement by making more SMB drive writes to Domain Controllers. This time the attackers did not upload web shells, but malware, in the form of executables and Windows .bat files.

Darktrace alerted the security team as it was extremely unusual for the Exchange server and its peer group to make SMB drive writes to hidden shares to a Domain Controller, particularly using executables and batch files. The activity was presented to the team in the form of a high-confidence alert such as the anonymized example below.

Figure 2: Example graphic of Darktrace detecting unusual connectivity

The batch file was called ‘a.bat’. At this point, the security team could have created a packet capture for the a.bat file in Darktrace with the click of a button, inspecting the content and details of that script at the time of the intrusion.

Darktrace also listed the credentials involved in the activity, providing context into the compromised accounts. This allows an analyst to pivot rapidly around the data and further understand the scope of the intrusion.

Bird’s-eye perspective

In addition to detecting the malicious activity outlined above, Darktrace’s Cyber AI Analyst autonomously summarized the incident and reported on it, outlining the internal reconnaissance and lateral movement activity in a single, cohesive incident.

The organization has several thousand devices covered by Darktrace’s Enterprise Immune System. Nevertheless, over the period of one week, the Hafnium intrusion was in the top five incidents highlighted in Cyber AI Analyst. Even a small or resource-stretched security team, with only a few minutes available per week to review the highest-severity incidents, could have seen and inspected this threat.

Below is a graphic showing a similar Cyber AI Analyst incident created by Darktrace.

Figure 3: A Cyber AI Analyst report showing unusual SMB activity

How to stop a zero-day

Large scale campaigns which target Internet-facing infrastructure and leverage zero-day exploits will continue to occur regularly, and such attacks will always succeed in evading signature-based detection. However, organizations are not helpless against the next high-profile zero-day or supply chain attack.

Detecting the movements of attackers inside a system and responding to contain in-progress threats is possible before IoCs have been provided. The methods of detection outlined above protected the company against this attack in December, and the same techniques will continue to protect the company against unknown threats in the future.

Learn more about how Darktrace AI has stopped Hafnium cyber-attacks and similar threat actors

Darktrace model detections:

  • Device / New or Uncommon WMI Activity
  • Executable Uploaded to DC
  • Compliance / High Priority Compliance Model Breach
  • Compliance / SMB Drive Write
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Network Scan - Low Anomaly Score
  • Unusual Activity / Unusual Internal Connections

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI