Blog
/
Network
/
February 11, 2025

Defending Against Living-off-the-Land Attacks: Anomaly Detection in Action

Discover how Darktrace detected and responded to cyberattacks using Living-off-the-Land (LOTL) tactics to exploit trusted services and tools on customer networks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2025

What is living-off-the-land?

Threat actors employ a variety of techniques to compromise target networks, including exploiting unpatched vulnerabilities, abusing misconfigurations, deploying backdoors, and creating custom malware. However, these methods generate a lot of noise and are relatively easy for network and host-based monitoring tools to detect, especially once indicators of compromise (IoCs) and tactics, techniques, and procedures (TTPs) are published by the cybersecurity community.

Living-off-the-Land (LOTL) techniques, however, allow attacks to remain nearly invisible to Endpoint Detection and Response (EDR) tools – leveraging trusted protocols, applications and native systems to carry out malicious activity. While mitigations exist, they are often poorly implemented. The Cybersecurity and Infrastructure Security Agency (CISA) found that some organizations “lacked security baselines, allowing [Living-off-the-Land binaries (LOLBins)] to execute and leaving analysts unable to identify anomalous activity” and “organizations did not appropriately tune their detection tools to reduce alert noise, leading to an unmanageable level of alerts to sift through and action" [1].

Darktrace / NETWORK addresses this challenge across Information Technology (IT), Operational Technology (OT), and cloud environments by continuously analyzing network traffic and identifying deviations from normal behavior with its multi-layered AI – helping organizations detect and respond to LOTL attacks in real time.

Darktrace’s detection of LOTL attacks

This blog will review two separate attacks detected by Darktrace that leveraged LOTL techniques at several stages of the intrusion.

Case A

Reconnaissance

In September 2024, a malicious actor gained access to a customer network via their Virtual Private Network (VPN) from two desktop devices that had no prior connection history. Over two days, the attacker conducted multiple network scans, targeting ports associated with Remote Desktop Protocol (RDP) and NTLM authentication. Darktrace detected this unusual activity, triggering multiple alerts for scanning and enumeration activity.

Unusual NTLM authentication attempts using default accounts like “Guest” and “Administrator” were detected. Two days after the initial intrusion, suspicious DRSGetNCChanges requests were observed on multiple domain controllers (DCs), targeting the Directory Replication Service RPC interface (i.e., drsuapi) – a technique used to extract account hashes from DCs. This process can be automated using tools like Mimikatz's DcSync and DCShadow

Around the same time, attacker-controlled devices were seen presenting an admin credential and another credential potentially granting access to Cisco Firewall systems, suggesting successful privilege escalation. Due to the severity of this activity, Darktrace’s Autonomous Response was triggered to prevent the device from further deviation from its normal behavior. However, because Autonomous Response was configured in Human Confirmation mode, the response actions had to be manually applied by the customer.

Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.
Figure 1: Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.

Lateral movement

Darktrace also detected anomalous RDP connections to domain controllers, originating from an attacker-controlled device using admin and service credentials. The attacker then successfully pivoted to a likely RDP server, leveraging the RDP protocol – one of the most commonly used for lateral movement in network compromises observed by Darktrace.

Cyber Analyst Incident displaying unusual RDP lateral movement connections
Figure 2: Cyber Analyst Incident displaying unusual RDP lateral movement connections.

Tooling

Following an incoming RDP connection, one of the DCs made a successful GET request to the URI '/download/122.dll' on the 100% rare IP, 146.70.145[.]189. The request returned an executable file, which open-source intelligence (OSINT) suggests is likely a CobaltStrike C2 sever payload [2] [3]. Had Autonomous Response been enabled here, it would have blocked all outgoing traffic from the DC allowing the customer to investigate and remediate.

Additionally, Darktrace detected a suspicious CreateServiceW request to the Service Control (SVCCTL) RPC interface on a server. The request executed commands using ‘cmd.exe’ to perform the following actions

  1. Used ‘tasklist’ to filter processes named ”lsass.exe” (Local Security Authority Subsystem Service) to find its specific process ID.
  2. Used “rundll32.exe” to execute the MiniDump function from the “comsvcs.dll” library, creating a memory dump of the “lsass.exe” process.
  3. Saved the output to a PNG file in a temporary folder,

Notably, “cmd.exe” was referenced as “CMd.EXE” within the script, likely an attempt to evade detection by security tools monitoring for specific keywords and patterns.

Model Alert Log showing the unusual SVCCTL create request.
Figure 3: Model Alert Log showing the unusual SVCCTL create request.

Over the course of three days, this activity triggered around 125 Darktrace / NETWORK alerts across 11 internal devices. In addition, Cyber AI Analyst launched an autonomous investigation into the activity, analyzing and connecting 16 separate events spanning multiple stages of the cyber kill chain - from initial reconnaissance to payload retrieval and lateral movement.

Darktrace’s comprehensive detection enabled the customer’s security team to remediate the compromise before any further escalation was observed.

Case B

Between late 2023 and early 2024, Darktrace identified a widespread attack that combined insider and external threats, leveraging multiple LOTL tools for reconnaissance and lateral movement within a customer's network.

Reconnaissance

Initially, Darktrace detected the use of a new administrative credential by a device, which then made unusual RDP connections to multiple internal systems, including a 30-minute connection to a DC. Throughout the attack, multiple unusual RDP connections using the new administrative credential “%admin!!!” were observed, indicating that this protocol was leveraged for lateral movement.

The next day, a Microsoft Defender Security Integration alert was triggered on the device due to suspicious Windows Local Security Authority Subsystem Service (LSASS) credential dump behavior. Since the LSASS process memory can store operating system and domain admin credentials, obtaining this sensitive information can greatly facilitate lateral movement within a network using legitimate tools such as PsExec or Windows Management Instrumentation (WMI) [4]. Security integrations with other security vendors like this one can provide insights into host-based processes, which are typically outside of Darktrace’s coverage. Darktrace’s anomaly detection and network activity monitoring help prioritize the investigation of these alerts.

Three days later, the attacker was observed logging into the DC and querying tickets for the Lightweight Directory Access Protocol (LDAP) service using the default credential “Administrator.” This activity, considered new by Darktrace, triggered an Autonomous Response action that blocked further connections on Kerberos port 88 to the DC. LDAP provides a central location to access and manage data about computers, servers, users, groups, and policies within a network. LDAP enumeration can provide valuable Active Directory (AD) object information to an attacker, which can be used to identify critical attack paths or accounts with high privileges.

Lateral movement

Following the incoming RDP connection, the DC began scanning activities, including RDP and Server Block Message (SMB) services, suggesting the attacker was using remote access for additional reconnaissance. Outgoing RDP connection attempts to over 100 internal devices were observed, with around 5% being successful, highlighting the importance of this protocol for the threat actor’s lateral movement.

Around the same time, the DC made WMI, PsExec, and service control connections to two other DCs, indicating further lateral movement using native administrative protocols and tools. These functions can be leveraged by attackers to query system information, run malicious code, and maintain persistent access to compromised devices while avoiding traditional security tool alarms. In this case, requested services included the IWbemServices (used to access WMI services) and IWbemFetchSmartEnum (used to retrieve a network-optimized enumerator interface) interfaces, with ExecQuery operations detected for the former. This method returns an enumerable collection of IWbemClassObject interface objects based on a query.

Additionally, unusual Windows Remote Management (WinRM) connections to another domain controller were observed. WinRM is a Microsoft protocol that allows systems to exchange and access management information over HTTP(S) across a network, such as running executables or modifying the registry and services.

Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.
Figure 4: Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.

The DC was also detected writing the file “PSEXESVC.exe” to the “ADMIN$” share of another internal device over the SMB file transfer network protocol. This activity was flagged as highly unusual by Darktrace, as these two devices had not previously engaged in this type of SMB connectivity.

It is rare for an attacker to immediately find the information or systems they are after, making it likely they will need to move around the network before achieving their objectives. Tools such as PsExec enable attackers to do this while largely remaining under the radar. With PsExec, attackers who gain access to a single system can connect to and execute commands remotely on other internal systems, access sensitive information, and spread their attack further into the environment.

Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.
Figure 5. Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.

Darktrace further observed the DC connecting to the SVCCTL endpoint on a remote device and performing the CreateServiceW operation, which was flagged as highly unusual based on previous behavior patterns between the two devices. Additionally, new ChangeServiceConfigW operations were observed from another device.

Aside from IWbemServices requests seen on multiple devices, Darktrace also detected multiple internal devices connecting to the ITaskSchedulerService interface over DCE-RPC and performing new SchRpcRegisterTask operations, which register a task on the destination system. Attackers can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The creation of these tasks was considered new or highly unusual and triggered several anomalous ITaskScheduler activity alerts.

Conclusion

As pointed out by CISA, threat actors frequently exploit the lack of implemented controls on their target networks, as demonstrated in the incidents discussed here. In the first case, VPN access was granted to all domain users, providing the attacker with a point of entry. In the second case, there were no restrictions on the use of RDP within the targeted network segment, allowing the attackers to pivot from device to device.

Darktrace assists security teams in monitoring for unusual use of LOTL tools and protocols that can be leveraged by threat actors to achieve a wide range of objectives. Darktrace’s Self-Learning AI sifts through the network traffic noise generated by these trusted tools, which are essential to administrators and developers in their daily tasks, and highlights any anomalous and potentially unexpected use.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

[1] https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf

[2] https://www.virustotal.com/gui/ip-address/146.70.145.189/community

[3] https://www.virustotal.com/gui/file/cc9a670b549d84084618267fdeea13f196e43ae5df0d88e2e18bf5aa91b97318

[4]https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks

MITRE Mapping

INITIAL ACCESS - External Remote Services

DISCOVERY - Remote System Discovery

DISCOVERY - Network Service Discovery

DISCOVERY - File and Directory Discovery

CREDENTIAL ACCESS – OS Credential Dumping: LSASS Memory

LATERAL MOVEMENT - Remote Services: Remote Desktop Protocol

LATERAL MOVEMENT - Remote Services: SMB/Windows Admin Shares

EXECUTION - System Services: Service Execution

PERSISTENCE - Scheduled Task

COMMAND AND CONTROL - Ingress Tool Transfer

Darktrace Model Detections

Case A

Device / Suspicious Network Scan Activity

Device / Network Scan

Device / ICMP Address Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / Possible SMB/NTLM Reconnaissance

Anomalous Connection / Unusual Admin SMB Session

Device / SMB Session Brute Force (Admin)

Device / Possible SMB/NTLM Brute Force

Device / SMB Lateral Movement

Device / Anomalous NTLM Brute Force

Anomalous Connection / SMB Enumeration

Device / SMB Session Brute Force (Non-Admin)

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous Connection / Possible Share Enumeration Activity

Device / RDP Scan

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Connection / High Priority DRSGetNCChanges

Compliance / Default Credential Usage

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Device / Large Number of Model Breaches from Critical Network Device

User / New Admin Credential Ticket Request

Compromise / Unusual SVCCTL Activity

Anomalous Connection / New or Uncommon Service Control

Anomalous File / Script from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous File / EXE from Rare External Location

Anomalous File / Numeric File Download

Device / Initial Breach Chain Compromise

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compromise / Multiple Kill Chain Indicators

Case B

User / New Admin Credentials on Client

Compliance / Default Credential Usage

Anomalous Connection / SMB Enumeration

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Device / New or Uncommon WMI Activity

Device / Anomaly Indicators / New or Uncommon WMI Activity Indicator

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / SMB Drive Write

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Device / Multiple Lateral Movement Model Breaches

Device / Anomalous ITaskScheduler Activity

Anomalous Connection / Unusual Admin RDP Session

Device / Large Number of Model Breaches from Critical Network Device

Compliance / Default Credential Usage

IOC - Type - Description/Probability

146.70.145[.]189 - IP Address - Likely C2 Infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

January 19, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI