Blog
/
Email
/
October 23, 2022

How Darktrace AI Isn't Fooled by Impersonation Tactics

Learn how Darktrace AI outsmarts impersonation tactics in cybersecurity. Discover cutting-edge security insights and how to keep yourself safe.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
George Kim
Analyst Consulting Lead – AMS
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Oct 2022

Two of the most popular ways threat actors send malicious emails is through the use of spoofing and impersonation tactics. While spoofed emails are sent on behalf of a trusted domain and obscure the true source of the sender, impersonation emails come from a fake domain, but one that may be visually confused for an authentic one. In order to identify impersonation tactics in a suspicious email, we should first ask why an attacker might utilize an impersonation approach over spoofing.

In contrast to domain spoofing, which lacks validation and can be readily detected by email security gateway softwares, impersonation with a lookalike domain allows attackers to send emails with full SPF and DKIM validation, making them appear legitimate to many security gateways. This blog will explore impersonation tactics and how Darktrace/Email protects against them. 

There are two distinct ways to leverage impersonation tactics: 

1.     Impersonating the domain 

2.     Impersonating a real user from that domain  

Domain impersonation is often implemented with the use of ‘confusable characters’. This involves misspelling through the use of character substitutions which make the domain look as visually similar to the original as possible (eg. m rn, o 0, l  I). Threat actors can then also impersonate a real user by adding the the personal field of that user’s email to the new, malicious domain. Comparing impersonation emails with legitimate emails highlights how similar these malicious email addresses are to the real thing (Figure 1).

Figure 1- Email log that highlights the impersonated emails from “Mike Lewis” from the domain “smartercornmerce[.]net”. Along with the impersonated domain, the attackers attempt to impersonate the known user, “Mike Lewis” as well. The use of both distinct types of impersonation categorize the email as what Darktrace/Email refers to as a Double Impersonation email.

Figure 2- Email Summary details of one of the malicious double impersonation emails that was sent by the impersonated sender, “Mike Lewis” from “smartercornmerce[.]net”, that highlights the various anomaly indicators that Darktrace/Email detected, as well the various tags and actions it applied.

Darktrace/Email uses AI which analyses impersonation emails by comparing the ‘From’ header domains of emails against known external domains and generates a percentage score for how likely the domain is to be an imitation of the known domain (Figure 3).  

Figure 3- Darktrace compares the external sender, “mike.lewis@smartercornmerce[.]net”, with similar external names and domains that have been observed in different inbound emails on the network.


Impersonation emails are also detected via spoof score metrics such as Domain External Spoof Score and Domain Internal Spoof Score (Figure 4). 

Figure 4- Darktrace AI analyzed the malicious double impersonation email from Figure 2 and generated a high Domain External Spoof Score (100) and Spoof Score External (94)


Double Impersonation emails such as the one highlighted in Figure 2 are utilized by threat actors to gain the trust of the recipient and convince them to access malicious payloads such as phishing links and attachments. For example, the malicious double impersonation email from Figure 2 contained a suspicious hidden link to a Wordpress site which could have redirected the user to a phishing endpoint and tricked them into divulging sensitive information (Figure 5). The endpoint itself appears to lead unsuspecting recipients to a false share link posing as a payment-themed Excel file.

Figure 5- Details of the Wordpress link embedded in the suspicious email, which was hidden beneath display text to convince a user to click it without knowledge of where it would lead. The domain has a 100% rarity according to Darktrace AI.

Figure 6- Wordpress webpage that highlights another link for the user to click in order to be redirected to the invoice statement in a Microsoft Excel document.

Various indicators highlighted the webpage as suspicious and potentially malicious. Firstly, the use of ‘SmarterCORNmerce’ in the link to the webpage was at odds with the use of SmarterCOMMERCE throughout the page itself. The link also showed the invoice statement to be an Microsoft Excel file, despite the email suggesting it was a PDF document. Further investigation revealed the link to be associated with a Fleek hosting service and CDN (Figure 7), and that it redirected users to a fake Microsoft page. 

Figure 7 - Source code from the Wordpress webpage shows that the fake Microsoft link redirects users to a Fleek hosted page. This page may contain additional javascript content to download malware onto the user’s device.

As well as the domain spoof score metrics highlighted in Figure 4, Darktrace/Email analyses the suspicious payloads embedded in emails and generates scores to indicate the likelihood that a payload may be a phishing attempt.

Figure 8- Additional metrics for the double impersonation email that highlight the high phishing inducement score (96) for the email.

As the DETECT functionality of Darktrace/Email generates high scores metrics such as Domain External Spoof Score and Phishing Inducement, the RESPOND function will fire complementary models which then trigger relevant actions on the various payloads embedded in these emails and even the delivery of the emails themselves. As the impersonation email highlighted in Figure 2 impersonated not only the trusted domain but the known and trusted sender, Darktrace AI triggers the Double Impersonation model. Additional spoofing models such as ‘Basic Known Entity Similarities + Suspicious Content’ and ‘External Domain Similarities + Maximum Similarity’ were also triggered, indicating the high possibility that the suspicious email is a domain and user impersonation email sent by a malicious attacker.

Figure 9- The Email console highlights the different models the email triggered, including the Basic Known Entity Similarities + Suspicious Content and External Domain Similarities + Maximum Similarity model breaches and the various models that triggered significant actions in response to the potentially malicious impersonation email.


When Darktrace/Email detects a malicious double impersonation email, it responds by triggering a Hold action, preventing the email from appearing in the recipient’s inbox. Darktrace/Email’s RESPOND functionality could also take action against the suspicious link payloads embedded in the email with a Double Lock Link action. This will prevent users from attempting to click on malicious phishing links. Such actions highlight how Darktrace/Email excels in using AI to detect and take action against potentially malicious impersonation emails that may be prevalent in any user’s inbox. 

Though impersonation is becoming increasingly targeted and efficient, Darktrace/Email has both detection and response capabilities that can ensure customers have secure coverage for their email environments.

Thanks to Ben Atkins for his contributions to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
George Kim
Analyst Consulting Lead – AMS

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI