Blog
/

Inside the SOC

Email

/
October 23, 2022

How Darktrace AI Isn't Fooled by Impersonation Tactics

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Oct 2022
Learn how Darktrace AI outsmarts impersonation tactics in cybersecurity. Discover cutting-edge security insights and how to keep yourself safe.

Two of the most popular ways threat actors send malicious emails is through the use of spoofing and impersonation tactics. While spoofed emails are sent on behalf of a trusted domain and obscure the true source of the sender, impersonation emails come from a fake domain, but one that may be visually confused for an authentic one. In order to identify impersonation tactics in a suspicious email, we should first ask why an attacker might utilize an impersonation approach over spoofing.

In contrast to domain spoofing, which lacks validation and can be readily detected by email security gateway softwares, impersonation with a lookalike domain allows attackers to send emails with full SPF and DKIM validation, making them appear legitimate to many security gateways. This blog will explore impersonation tactics and how Darktrace/Email protects against them. 

There are two distinct ways to leverage impersonation tactics: 

1.     Impersonating the domain 

2.     Impersonating a real user from that domain  

Domain impersonation is often implemented with the use of ‘confusable characters’. This involves misspelling through the use of character substitutions which make the domain look as visually similar to the original as possible (eg. m rn, o 0, l  I). Threat actors can then also impersonate a real user by adding the the personal field of that user’s email to the new, malicious domain. Comparing impersonation emails with legitimate emails highlights how similar these malicious email addresses are to the real thing (Figure 1).

Figure 1- Email log that highlights the impersonated emails from “Mike Lewis” from the domain “smartercornmerce[.]net”. Along with the impersonated domain, the attackers attempt to impersonate the known user, “Mike Lewis” as well. The use of both distinct types of impersonation categorize the email as what Darktrace/Email refers to as a Double Impersonation email.

Figure 2- Email Summary details of one of the malicious double impersonation emails that was sent by the impersonated sender, “Mike Lewis” from “smartercornmerce[.]net”, that highlights the various anomaly indicators that Darktrace/Email detected, as well the various tags and actions it applied.

Darktrace/Email uses AI which analyses impersonation emails by comparing the ‘From’ header domains of emails against known external domains and generates a percentage score for how likely the domain is to be an imitation of the known domain (Figure 3).  

Figure 3- Darktrace compares the external sender, “mike.lewis@smartercornmerce[.]net”, with similar external names and domains that have been observed in different inbound emails on the network.


Impersonation emails are also detected via spoof score metrics such as Domain External Spoof Score and Domain Internal Spoof Score (Figure 4). 

Figure 4- Darktrace AI analyzed the malicious double impersonation email from Figure 2 and generated a high Domain External Spoof Score (100) and Spoof Score External (94)


Double Impersonation emails such as the one highlighted in Figure 2 are utilized by threat actors to gain the trust of the recipient and convince them to access malicious payloads such as phishing links and attachments. For example, the malicious double impersonation email from Figure 2 contained a suspicious hidden link to a Wordpress site which could have redirected the user to a phishing endpoint and tricked them into divulging sensitive information (Figure 5). The endpoint itself appears to lead unsuspecting recipients to a false share link posing as a payment-themed Excel file.

Figure 5- Details of the Wordpress link embedded in the suspicious email, which was hidden beneath display text to convince a user to click it without knowledge of where it would lead. The domain has a 100% rarity according to Darktrace AI.

Figure 6- Wordpress webpage that highlights another link for the user to click in order to be redirected to the invoice statement in a Microsoft Excel document.

Various indicators highlighted the webpage as suspicious and potentially malicious. Firstly, the use of ‘SmarterCORNmerce’ in the link to the webpage was at odds with the use of SmarterCOMMERCE throughout the page itself. The link also showed the invoice statement to be an Microsoft Excel file, despite the email suggesting it was a PDF document. Further investigation revealed the link to be associated with a Fleek hosting service and CDN (Figure 7), and that it redirected users to a fake Microsoft page. 

Figure 7 - Source code from the Wordpress webpage shows that the fake Microsoft link redirects users to a Fleek hosted page. This page may contain additional javascript content to download malware onto the user’s device.

As well as the domain spoof score metrics highlighted in Figure 4, Darktrace/Email analyses the suspicious payloads embedded in emails and generates scores to indicate the likelihood that a payload may be a phishing attempt.

Figure 8- Additional metrics for the double impersonation email that highlight the high phishing inducement score (96) for the email.

As the DETECT functionality of Darktrace/Email generates high scores metrics such as Domain External Spoof Score and Phishing Inducement, the RESPOND function will fire complementary models which then trigger relevant actions on the various payloads embedded in these emails and even the delivery of the emails themselves. As the impersonation email highlighted in Figure 2 impersonated not only the trusted domain but the known and trusted sender, Darktrace AI triggers the Double Impersonation model. Additional spoofing models such as ‘Basic Known Entity Similarities + Suspicious Content’ and ‘External Domain Similarities + Maximum Similarity’ were also triggered, indicating the high possibility that the suspicious email is a domain and user impersonation email sent by a malicious attacker.

Figure 9- The Email console highlights the different models the email triggered, including the Basic Known Entity Similarities + Suspicious Content and External Domain Similarities + Maximum Similarity model breaches and the various models that triggered significant actions in response to the potentially malicious impersonation email.


When Darktrace/Email detects a malicious double impersonation email, it responds by triggering a Hold action, preventing the email from appearing in the recipient’s inbox. Darktrace/Email’s RESPOND functionality could also take action against the suspicious link payloads embedded in the email with a Double Lock Link action. This will prevent users from attempting to click on malicious phishing links. Such actions highlight how Darktrace/Email excels in using AI to detect and take action against potentially malicious impersonation emails that may be prevalent in any user’s inbox. 

Though impersonation is becoming increasingly targeted and efficient, Darktrace/Email has both detection and response capabilities that can ensure customers have secure coverage for their email environments.

Thanks to Ben Atkins for his contributions to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
George Kim
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI