Blog
/
/
April 22, 2020

AI-Powered Darktrace Email | Defend Against Phishing Attacks

Protect your organization from phishing attacks with Antigena Email. Learn how Bunim Murray Productions secures against targeted spear phishing emails.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabe Cortina
CTO, Bunim/Murray Productions
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Apr 2020

The 2014 Sony hack changed everything. Bunim/Murray, like other entertainment companies, woke up to the new threats targeting our sector – jumpstarting our journey to improve security.

Bunim/Murray is the production company behind a whole host of reality television shows and is well-known for several hit series such as The Real World (MTV), Road Rules (MTV), The Simple Life (E!), Family or Fiancé (OWN), and Starting Over (syndicated). Bunim/Murray Productions infuses its finely-tuned sense of dramatic story structure to turn the ordinary tales of real people into extraordinary television programming and filmed entertainment. When landing as the CTO at Bunim/Murray, protecting our business was – and still is – a fundamental part of the job. With strong support from the CEO and CFO, I embarked on the journey to bolster cyber defense for our organization.

Bunim/Murray has some unique challenges in security: we onboard and offboard many employees, especially in production. We have a lot of BYOD (‘Bring Your Own Device’) users. Our IT staff is lean, and we don’t want to spend a lot of time and money on security resources or services. Instead, we want to focus on improving business processes – preparing our organization to launch capabilities to remain competitive in an industry undergoing transformation.

So, in searching for security tools, we were looking for technologies with the following criteria:

  • User-friendly
  • Able to continously identify and respond to the latest threats
  • Efficient with IT resources – low on false positives and alerts
  • Cost effective

After being called by Darktrace, I invited the team over to see if it made sense for them to participate in a bake-off with other tools we were assessing. At our meeting, the team at Darktrace spoke to me about the AI and machine learning capabilities, its roots in MI5 cyber operations, how it would fit into our ecosystem, and the product roadmap. Traditionally, I’m not one to be easily impressed by words – so I asked to try it out within our own organization. Within a week, we had the technology installed and up and running in our data center.

Darktrace’s Enterprise Immune System technology immediately began to baseline the dynamic ‘pattern of life’ for our business. It was the first time we had seen all the devices on our network, and we were able to drill down into all of the activity on our environment. But, even more impressive, Darktrace’s AI instantly got to work in the background, alerting us when we needed to investigate an in-progress security event in real time. Not only were we impressed with the machine learning capabilities, we were impressed with the level of support and security expertise Darktrace provided – and continues to provide our business. I canceled the bake-off and bought the system.

As we moved forward on our journey, our highest vulnerability became phishing. We subscribed to a company to train our workforce and got excellent results. We then turned on Microsoft Advanced ATP to help filter spam and phishing emails. And when I learned that Darktrace was pioneering a new approach to neutralize phishing attacks, I got on board early.

Using AI to tackle phishing head on

We were one of the first adopters of Antigena Email, and the first release surprised us. Within days, Antigena Email cut down phishing emails like no other tool I had ever seen before in my career. Using AI, Antigena Email learns all of our users’ activity patterns – how they interact and communicate both internally and externally. It creates a comprehensive and evolving understanding of what’s ‘normal’ for all of our users, and from there, identifies significant anomalies indicative of a vulnerability or threat. Once the threat is detected, Antigena Email contains the attack before it can cause damage.

Incredibly, once we started using Antigena Email, we no longer needed to spend time and money training our users on phishing awareness because we simply weren’t seeing phishing emails anymore – Antigena Email was blocking them before they ever reached the user.

We turned off our Microsoft ATP and instead used Darktrace’s plug-in to Office 365 and the Dropbox monitoring feature. These features turned out to be essential as we increased our remote workforce due to COVID-19.

Antigena Email in action: Neutralizing COVID-19 phishing campaigns

We have all seen the hundreds of thousands of COVID-19-related domains that have been created by cyber-attackers looking to launch novel phishing campaigns. By exploiting the emotional vulnerability of the situation, these attackers craft messages that are so convincing to users that they click on these malicious links. It is our unfortunate reality that threat-actors use these types of events to prey on the collective attention of the population.

As I’m sure countless other organizations have also experienced, Bunim/Murray has not been immune to these types of attacks. In fact, just last week, Antigena Email caught several phishing emails purporting to deliver corporate COVID-19 updates. These emails bore a spoofed Bunim/Murray domain, with the subject line ‘COVID-19 Update 7.4.2020’. Fortunately, due to Antigena Email’s granular analysis of what’s normal for our corporate email communication, it was able to detect this spoofed domain and block the emails from ever reaching any of the target users.

It’s exactly this type of situation that demonstrates the power of Antigena Email. Had these emails reached the user, we might have been in a situation where one of our well-intentioned employees clicked on the malicious link in an attempt to get accurate, up-to-date information – not recognizing that it would introduce malware into our environment. But with Antigena Email, we don’t have to worry about our end user behavior because the AI neutralizes it before it even gets to that point.

Technology that evolves as we do

What threats will be coming after COVID-19? I am not sure. But, I am confident that Darktrace’s AI will be on it. With its ability to ingest new and evolving information from its customer base, coupled with its top-notch security resources, we know that Darktrace will be able to continue to monitor, alert, and respond to new threats – even if those threats have never been seen before.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabe Cortina
CTO, Bunim/Murray Productions

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI