Blog
/
Network
/
August 17, 2023

Successfully Containing an Admin Credential Attack

Discover how Darktrace's anomaly-based threat detection thwarted a cyber-attack on a customer's network, stopping a malicious actor in their tracks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Aug 2023

What is Admin Credential Abuse?

In an effort to remain undetected by increasingly vigilant security teams, malicious actors across the threat landscape often resort to techniques that allow them to remain ‘quiet’ on the network and carry out their objectives subtly. One such technique often employed by attackers is using highly privileged credentials to carry out malicious activity.

This emphasizes the need to be hyper vigilant and not assume that ‘administrative’ activity using privileged credentials is legitimate. In this way, both internal visibility and defense in-depth are needed, as well as a strong understanding of ‘normal’ administrative activity to then identify any deviations from this.  

In one recent example, Darktrace identified a threat actor attempting to use privileged administrative credentials to move laterally through a customer’s network and compromise two further critical servers. Darktrace DETECT™ identified that this activity was unusual and alerted the customer to early signs of compromise, reconnaissance and lateral movement to the other critical devices, while Darktrace RESPOND™ acted autonomously to inhibit the spread of activity and allowed the customer to quarantine the compromised devices.

Attack Overview and Darktrace Coverage

Over the course of a week in late May 2023, Darktrace observed a compromise on the network of a customer in the Netherlands. The threat actors primarily used living off the land techniques, abusing legitimate administrative credentials and executables to perform unexpected activities. This technique is intended to go under the radar of traditional security tools that are often unable to distinguish between the legitimate or malicious use of privileged credentials.

Darktrace was the only security solution in the customer’s stack that way able to detect and contain the attack, preventing it from spreading through their digital estate.

1. Device Reactivated

On May 22, 2023, Darktrace began to observe traffic originating from a File Server device which prior to this, had been been inactive on the network for some time, with no incoming or outgoing traffic recently observed for this IP. Therefore, upon initiating connections again, Darktrace’s AI tagged the device with the “Re-Activated Device” label. It also tagged the device as an “Internet Facing System”, which could represent an initial point of compromise.

Following this, the device was observed using an administrative credential that was commonly used across network, with no clear indications of brute-force activity or successive login failures preceeding this activity. The unusual use of a known credential on a network can be very difficult to detect for traditional security tools. Darktrace’s anomaly-based detection allows it to recognize subtle deviations in device behavior meaning it is uniquely placed to recognize this type of activity.

2. Reconaissance  

On the following day, the affected device began to perform SMB scans for open 445 ports, and writing files such as srvsvc and winreg, both of which are indicative of network  reconnaissance. Srvsvc is used to enumerate available SMB shares on destination devices which could be used to then write malicious files to these shares, while Winreg (Windows Registry) is used to store information that configures users, applications, and hardware devices [1]. Darktrace also observed the device carrying out DCE_RPC activity and making Windows Management Instrumentation (WMI) enumeration requests to other internal devices.

3. Lateral Movement via SMB

On May 24 and May 30, Darktrace observed the same device writing files over SMB to a number of other internal devices, including an SMB server and the Domain Controller. Darktrace identified that these writers were to privileged credential paths, such as C$ and ADMIN$, and it further recognized that the device was using the compromised administrative credential.

The files included remote command executable files (.exe) and batch scripts which execute commands upon clicking in a serial order. This behavior is indicative of a threat actor performing lateral movement in an attempt to infect other devices and strengthen their foothold in the network.

Files written:

·       LogConverter.bat

·       sql.bat

·       Microsoft.NodejsTools.PressAnyKey.exe

·       PSEXESVC.exe

·       Microsoft.NodejsTools.PressAnyKey.lnk

·       CG6oDkyFHl3R.t

5. Reconnaissance Spread

Around the same time as the observed lateral movement activity, between May 24 and May 30, the initially compromised device continued SMB and DCE_RPC activity, mainly involving SMB writes of files such as srvsvc, and PSEXESVC.exe.

Then, on May 28, Darktrace identified another internal Domain Controller engaging in similar suspicious behavior to the original compromised device. This included network scanning, enumeration and service control activity, indicating a spread of further malicious reconnaissance.

Following the successful detection of this activity, Darktrace’s Cyber AI Analyst launched autonomous investigations which was able to correlate incidents from multiple affected devices across the network, in doing so connecting multiple incidents into one security event.

Figure 1: Cyber AI Analyst connecting multiple events into one incident
Figure 2: Cyber AI Analyst investigation process to identify suspicious activity.

6. Lateral Movement

Alongside these SMB writes, the initially compromised device was seen connecting to various internal devices over ports associated with administrative protocols such as Remote Desktop Protocol (RDP). It also made a high volume of NTLM login failures for the credential ‘administrator’, suggesting that the malicious actor was attempting to brute-force an administrative credential.

7. Suspicious External Activity

Following earlier SMB writes from the initially compromised device to the Domain Controller server, the Domain Controller was seen making an unusual volume of external connections to rare endpoints which could indicate malicious command and control (C2) communication.

Alongside this activity, between May 30 and June 1, Darktrace also observed an unusually large number (over 12 million) of incoming connections from external endpoints. This activity is likely indicative of an attempted Denial of Service (DoS) attack.

Endpoints include:

·       45.15.145[.]92

·       198.2.200[.]89

·       162.211.180[.]215

Figure 3: Graphing function in the Darktrace UI showing the observed spike of inbound communication from external endpoints, indicating a potential DoS attack.

8. Reconnaissance and RDP activity

On May 31, the initially compromised device was seen creating an administrative RDP session with cookie ‘Administr’. Using the initially compromised administrative credential, further suspicious SMB activity was observed from the compromised devices on the same day including further SMB Enumeration, service control, PsExec remote command execution, and writes of another suspicious batch script file to various internal devices.

Darktrace RESPOND Coverage

Darktrace RESPOND’s autonomous response capabilities allowed it to take instantaneous preventative action against the affected devices as soon as suspicious activity was identified, consequently inhibiting the spread of this attack.

Specifically, Darktrace RESPOND was able to block suspicious connections to multiple internal devices and ports, among them port 445 which was used by threat actors to perform SMB scanning, for one hour. As a result of the autonomous actions carried out by Darktrace, the attack was stopped at the earliest possible stage.

Figure 4: Autonomous RESPOND actions taken against initially compromised devices.

In addition to these autonomous actions, the customer was able to further utilize RESPOND for containment purposes by manually actioning some of the more severe actions suggested by RESPOND, such as quarantining compromised devices from the rest of the network for a week.

Figure 5: Manually applied RESPOND actions to quarantine compromised devices for one week.

Conclusion

As attackers continue to employ harder to detect living off the land techniques to exploit administrative credentials and move laterally across networks, it is paramount for organizations to have an intelligent decision maker that can recgonize the subtle deviations in device behavior.

Thanks to its Self-Learning AI, Darktrace is uniquely placed to understand its customer’s networks, allowing it to recognize unusual or uncommon activity for individual devices or user credentials, irrespective of whether this activity is typically considered as legitimate.

In this case, Darktrace was the only solution in the customer’s security stack that successfully identified and mitigated this attack. Darktrace DETECT was able to identify the the early stages of the compromise and provide full visibility over the kill chain. Meanwhile, Darktrace RESPOND moved at machine-speed, blocking suspicious connections and preventing the compromise from spreading across the customer’s network.

Appendices

Darktrace DETECT Model Breaches

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / SMB Enumeration

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Possible Denial of Service Activity

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Compliance / Outgoing NTLM Request from DC

Compliance / SMB Drive Write

Device / Anomalous NTLM Brute Force

Device / ICMP Address Scan  

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon SMB Named Pipe

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / Possible SMB/NTLM Brute Force

Device / RDP Scan

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Darktrace RESPOND Model Breaches

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Cyber AI Analyst Incidents

Extensive Suspicious Remote WMI Activity

Extensive Unusual Administrative Connections

Large Volume of SMB Login Failures from Multiple Devices

Port Scanning

Scanning of Multiple Devices

SMB Writes of Suspicious Files

Suspicious Chain of Administrative Connections

Suspicious DCE_RPC Activity

TCP Scanning of Multiple Devices

MITRE ATT&CK Mapping

RECONNAISSANCE
T1595 Active Scanning
T1589.001 Gathering Credentials

CREDENTIAL ACCESS
T1110 Brute Force

LATERAL MOVEMENT
T1210 Exploitation of Remote Services
T1021.001 Remote Desktop Protocol

COMMAND AND CONTROL
T1071 Application Layer Protocol

IMPACT
T1498.001 Direct Network Flood

References

[1] https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI