Blog
/

Ransomware

/
December 22, 2021

9 Stages of Ransomware & How AI Responds

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Dec 2021
Discover the 9 stages of ransomware attacks and how AI responds at each stage. Learn how you can protect your business from cyber threats.

Ransomware gets its name by commandeering and holding assets ransom, extorting their owner for money in exchange for discretion and full cooperation in returning exfiltrated data and providing decryption keys to allow business to resume.

Average ransom demands are skyrocketing, rising to $5.3 million in 2021, a 518% increase from the previous year. But the cost of recovering from a ransomware attack typically far exceeds the ransom payments: the average downtime after a ransomware attack is 21 days; and 66% of ransomware victims report a significant loss of revenue following a successful attack.

In this series, we break down this huge topic step by step. Ransomware is a multi-stage problem, requiring a multi-stage solution that autonomously and effectively contains the attack at any stage. Read on to discover how Self-Learning AI and Autonomous Response stops ransomware in its tracks.

1. Initial intrusion (email)

Initial entry – the first stage of a ransomware attack – can be achieved through RDP brute-forcing (exposed Internet service), malicious websites and drive-by downloads, an insider threat with company credentials, system and software vulnerabilities, or any number of other attack vectors.

But the most common initial attack vector is email. An organization’s biggest security weakness is often their people – and attackers are good at finding ways of exploiting this. Well-researched, targeted, legitimate-looking emails are aimed at employees attempting to solicit a reaction: a click of a link, an opening of an attachment, or persuading them to divulge credentials or other sensitive information.

Gateways: Stops what has been seen before

Most conventional email tools rely on past indicators of attack to try and spot the next threat. If an email comes in from a blocklisted IP address or email domain, and uses known malware that has previously been seen in the wild, the attack may be blocked.

But the reality is, attackers know the majority of defenses take this historical approach, and so constantly update their attack infrastructure to bypass these tools. By buying new domains for a few pennies each, or creating bespoke malware with just small adaptions to the code, they can outpace and outsmart the legacy approach taken by a typical email gateway.

Real-world example: Supply chain phishing attack

By contrast, Darktrace’s evolving understanding of ‘normal’ for every email user in the organization enables it to detect subtle deviations that point to a threat – even if the sender or any malicious contents of the email are unknown to threat intelligence. This is what enabled the technology to stop an attack that recently targeted McLaren Racing, with emails sent to a dozen employees in the organization each containing a malicious link. This possible precursor to ransomware bypassed conventional email tools – largely because it was sent from a known supplier – however Darktrace recognized the account hijack and held the email back.

Figure 1: A snapshot of Darktrace’s Threat Visualizer surfacing the malicious email

Read the full case study

2. Initial intrusion (server-side)

With organizations rapidly expanding their Internet-facing perimeter, this increased attack surface has paved the way for a surge in brute-force and server-side attacks.

A number of vulnerabilities against such Internet-facing servers and systems have been disclosed this year, and for attackers, targeting and exploiting public-facing infrastructure is easier than ever – scanning the Internet for vulnerable systems is made simple with tools like Shodan or MassScan.

Attackers may also achieve initial intrusion via RDP brute-forcing or stolen credentials, with attackers often reusing legitimate credentials from previous data dumps. This has much higher precision and is less noisy than a classic brute-force attack.

A lot of ransomware attacks use RDP as an entry vector. This is part of a wider trend of ‘Living off the Land’: using legitimate off-the-shelf tools (abusing RDP, SMB1 protocol, or various command line tools WMI or Powershell) to blur detection and attribution by blending in with typical administrator activity. Ensuring that backups are isolated, configurations are hardened, and systems are patched is not enough – real-time detection of every anomalous action is needed.

Antivirus, firewalls and SIEMs

In cases of malware downloads, endpoint antivirus will detect these if, and only if, the malware has been seen and fingerprinted before. Firewalls typically require configuration on a per-organization basis, and often need to be modified based on the needs of the business. If the attack hits the firewall where a rule or signature does not match it, again, it will bypass the firewall.

SIEM and SOAR tools also look for known malware being downloaded, leverage pre-programmed rules and use pre-programmed responses. While these tools do look for patterns, these patterns are defined in advance, and this approach relies on a new attack to have sufficiently similar traits to attacks that have been seen before.

Real-world example: Dharma ransomware

Darktrace detected a targeted Dharma ransomware attack against a UK organization exploiting an open RDP connection through Internet-facing servers. The RDP server began receiving a large number of incoming connections from rare IP addresses on the Internet. It is highly likely that the RDP credential used in this attack had been compromised at a previous stage – either via common brute-force methods, credential stuffing attacks, or phishing. Indeed, a technique growing in popularity is to buy RDP credentials on marketplaces and skip to initial access.

Figure 2: The model breaches that fired over the course of this attack, including anomalous RDP activity

Unfortunately, in this case, without Autonomous Response installed, the Dharma ransomware attack continued until its final stages, where the security team were forced into the heavy-handed and disruptive action of pulling the plug on the RDP server midway through encryption.

Read the full case study

3. Establish foothold and C2

Whether through a successful phish, a brute-force attack, or some other method, the attacker is in. Now, they make contact with the breached device(s) and establish a foothold.

This stage allows attackers to control subsequent stages of the attack remotely. During these command and control (C2) communications, further malware may also pass from the attacker to the devices. This helps them to establish an even greater foothold within the organization and readies them for lateral movement.

Attackers can adapt malware functionality with an assortment of ready-made plug-ins, allowing them to lie low inside the business undetected. More modern and sophisticated ransomware is able to adapt by itself to the surrounding environment, and operate autonomously, blending in to regular activity even when cut off from its command and control server. These ‘self-sufficient’ ransomware strains pose a big problem for traditional defenses reliant on stopping threats solely on the grounds of its malicious external connections.

Viewing connections in isolation vs understanding the business

Conventional security tools like IDS and firewalls tend to look at connections in isolation rather than in the context of previous and potentially relevant connections, making command and control very difficult to spot.

IDS and firewalls may block ‘known-bad’ domains or use some geo-blocking, but this is where an attacker would likely leverage new infrastructure.

These tools also don’t tend to analyze for things like the periodicity, such as whether a connection is beaconing at a regular or irregular interval, or the age and rarity of the domain in the context of the environment.

With Darktrace’s evolving understanding of the digital enterprise, suspicious C2 connections and the downloads which follow them are spotted, even when conducted using regular programs or methods. The AI technology correlates multiple subtle signs of threat – a small subset of which includes anomalous connections to young and/or unusual endpoints, anomalous file downloads, incoming remote desktop, and unusual data uploads and downloads.

Once they are detected as a threat, Darktrace's Autonomous Response halts these connections and downloads, while allowing normal business activity to continue.

Real-world example: WastedLocker attack

When a WastedLocker ransomware attack hit a US agricultural organization, Darktrace immediately detected the initial unusual SSL C2 activity (based on a combination of destination rarity, JA3 unusualness and frequency analysis). Antigena (on this occasion configured in passive mode, and therefore not granted permission to take autonomous action) suggested instantly blocking the C2 traffic on port 443 and parallel internal scanning on port 135.

Figure 3: The Threat Visualizer reveals the action Antigena would have taken

When beaconing was later observed to bywce.payment.refinedwebs[.]com, this time over HTTP to /updateSoftwareVersion, Antigena escalated its response by blocking the further C2 channels.

Figure 4: Antigena escalates its response

Read the full case study

4. Lateral movement

Once an attacker has established a foothold within an organization, they begin to increase their knowledge of the wider digital estate and their presence within it. This is how they will find and access the files which they will ultimately attempt to exfiltrate and encrypt. It begins reconnaissance: scanning the network; building up a picture of its component devices; identifying the location of the most valuable assets.

Then the attacker begins moving laterally. They infect more devices and look to escalate their privileges – for instance, by obtaining admin credentials – thereby increasing their control over the environment. Once they have obtained authority and presence within the digital estate, they can progress to the final stages of the attack.

Modern ransomware has built-in functions that allow it to search automatically for stored passwords and spread through the network. More sophisticated strains are designed to build themselves differently in different environments, so the signature is constantly changing and it’s harder to detect.

Legacy tools: A blunt response to known threats

Because they rely upon static rules and signatures, legacy solutions struggle to prevent lateral movement and privilege escalation without also impeding essential business operations. Whilst in theory, an organization leveraging firewalls and NAC internally with proper network segmentation and a perfect configuration could prevent cross-network lateral movement, maintaining a perfect balance between protective and disruptive controls is near impossible.

Some organizations rely on Intrusion Prevent Systems (IPS) to deny network traffic when known threats are detected in packets, but as with previous stages, novel malware will evade detection, and this requires the database to be constantly updated. These solutions also sit at the ingress/egress points, limiting their network visibility. An Intrusion Detection System (IDS) may sit out-of-line, but doesn’t have response capabilities.

A self-learning approach

Darktrace’s AI learns ‘self’ for the organization, enabling it to detect suspicious activity indicative of lateral movement, regardless of whether the attacker uses new infrastructure or ‘lives off the land’. Potential unusual activity that Darktrace detects includes unusual scanning activity, unusual SMB, RDP, and SSH activity. Other models that fire at this stage include:

  • Suspicious Activity on High-Risk Device
  • Numeric EXE in SMB Write
  • New or Uncommon Service Control

Autonomous Response then takes targeted action to stop the threat at this stage, blocking anomalous connections, enforcing the infected device’s ‘pattern of life’, or enforcing the group ‘pattern of life’ – automatically clustering devices into peer groups and preventing a device from doing anything its peer group hasn’t done.

Where malicious behavior persists, and only if necessary, Darktrace will quarantine an infected device.

Real-world example: Unusual chain of RDP connections

At an organization in Singapore, one compromised server led to the creation of a botnet, which began moving laterally, predominantly by establishing chains of unusual RDP connections. The server then started making external SMB and RPC connections to rare endpoints on the Internet, in an attempt to find further vulnerable hosts.

Other lateral movement activities detected by Darktrace included the repeated failing attempts to access multiple internal devices over the SMB file-sharing protocol with a range of different usernames, implying brute-force network access attempts.

Figure 5: Darktrace’s Cyber AI Analyst reveals suspicious TCP scanning followed by a suspicious chain of administrative RDP connections

Read the full case study

5. Data exfiltration

In the past, ransomware was simply about encrypting an operating system and network files.

In a modern attack, as organizations insure against malicious encryption by becoming increasingly diligent with data backups, threat actors have moved towards ‘double extortion’, where they exfiltrate key data and destroy backups before the encryption takes place. Exfiltrated data is used to blackmail organizations, with attackers threatening to publish sensitive information online or sell it on to the organization’s competitors if they are not paid.

Modern ransomware variants also look for cloud file storage repositories such as Box, Dropbox, and others.

Many of these incidents aren’t public, because if IP is stolen, organizations are not always legally required to disclose it. However, in the case of customer data, organizations are obligated by law to disclose the incident and face the additional burden of compliance files – and we’ve seen these mount in recent years (Marriot, $23.8 million; British Airways, $26 million; Equifax, $575 million). There’s also the reputational blow associated with having to inform customers that a data breach has occurred.

Legacy tools: The same old story

For those that have been following, the narrative by now will sound familiar: to stop a ransomware attack at this stage, most defenses rely on either pre-programmed definitions of 'bad' or have rules constructed to combat different scenarios put organizations in a risky, never-ending game of cat and mouse.

A firewall and proxy might block connections based on pre-programmed policies based on specific endpoints or data volumes, but it’s likely an attacker will ‘live off the land’ and utilize a service that is generally allowed by the business.

The effectiveness of these tools will vary according to data volumes: they might be effective for ‘smash and grab’ attacks using known malware, and without employing any defense evasion techniques, but are unlikely to spot ‘low and slow’ exfiltration and novel or sophisticated strains.

On the other hand, because by nature it involves a break from expected behavior, even less conspicuous, low and slow data exfiltration is detected by Darktrace and stopped with Darktrace's Autonomos Response. No confidential files are lost, and attackers are unable to extort a ransom payment through blackmail.

Real-world example: Unusual chain of RDP connections

It becomes more difficult to find examples of Darktrace stopping ransomware at these later stages, as the threat is usually contained before it gets this far. This is the double-edged sword of effective security – early containment makes for bad storytelling! However, we can see the effects of a double extortion ransomware attack on an energy company in Canada. The organization had the Enterprise Immune System but no Antigena, and without anyone actively monitoring Darktrace’s AI detections, the attack was allowed to unfold.

The attacker managed to connect to an internal file server and download 1.95TB of data. The device was also seen downloading Rclone software – an open-source tool, which was likely applied to sync data automatically to the legitimate file storage service pCloud. Following the completion of the data exfiltration, the device ‘serverps’ finally began encrypting files on 12 devices with the extension *.06d79000. As with the majority of ransomware incidents, the encryption happened outside of office hours – overnight in local time – to minimize the chance of the security team responding quickly.

Read the full details of the attack

It should be noted that the exact order of the stages 3–5 above is not set in stone, and varies according to attack. Sometimes data is exfiltrated and then there is further lateral movement, and additional C2 beaconing. This entire period is known as the ‘dwell time’. Sometimes it takes place over only a few days, other times attackers may persist for months, slowly gathering more intel and exfiltrating data in a ‘low and slow’ fashion so as to avoid detection from rule-based tools that are configured to flag any single data transfer over a certain threshold. Only through a holistic understanding of malicious activity over time can a technology spot this level of activity and allow the security team to remove the threat before it reaches the latter and most damaging stages of ransomware.

6. Data encryption

Using either symmetric encryption, asymmetric encryption, or a combination of the two, attackers attempt to render as much data unusable in the organization’s network as they can before the attack is detected.

As the attackers alone have access to the relevant decryption keys, they are now in total control of what happens to the organization’s data.

Pre-programmed response and disruption

There are many families of tools that claim to stop encryption in this manner, but each contain blind spots which enable a sophisticated attacker to evade detection at this crucial stage. Where they do take action, it is often highly disruptive, causing major shutdowns and preventing a business from continuing its usual operations.

Internal firewalls prevent clients from accessing servers, so once an attacker has penetrated to servers using any of the techniques outlined above, they have complete freedom to act as they want.

Similarly, antivirus tools look only for known malware. If the malware has not been detected until this point, it is highly unlikely the antivirus will act here.

Stopping encryption autonomously

Even if familiar tools and methods are used to conduct it, Autonomous Response can enforce the normal ‘pattern of life’ for devices attempting encryption, without using static rules or signatures. This action can be taken independently or via integrations with native security controls, maximizing the return on other security investments. With a targeted Autonomous Response, normal business operations can continue while encryption is prevented.

7. Ransom note

It is important to note that in the stages before encryption, this ransomware attack is not yet “ransomware”. Only at this stage does it gets its name.

A ransom note is deployed. The attackers request payment in return for a decryption key and threaten the release of sensitive exfiltrated data. The organization must decide whether to pay the ransom or lose their data, possibly to their competition or the public. The average demand made by ransomware threat actors rose in 2021 to $5.3 million, with meat processing company JBS paying out $11 million and DarkSide receiving over $90 million in Bitcoin payments following the Colonial Pipeline incident.

All of the stages up until this point represent a typical, traditional ransomware attack. But ransomware is shifting from indiscriminate encryption of devices to attackers targeting business disruption in general, using multiple techniques to hold their victims to ransom. Additional methods of extortion include not only data exfiltration, but corporate domain hijack, deletion or encryption of backups, attacks against systems close to industrial control systems, targeting company VIPs… the list goes on.

Sometimes, attackers will just skip straight from stage 2 to 6 and jump straight to extortion. Darktrace recently stopped an email attack which showed an attacker bypassing the hard work and attempting to jump straight to extortion in an email. The attacker claimed to have compromised the organization’s sensitive data, requesting payment in bitcoin for its same return. Whether or not the claims were true, this attack shows that encryption is not always necessary for extortion, and this type of harassment exists in multiple forms.

Figure 6: Darktrace holds back the offending email, protecting the recipient and organization from harm

As with the email example we explored in the first post of this series, Darktrace/Email was able to step in and stop this email where other email tools would have let it through, stopping this potentially costly extortion attempt.

Whether through encryption or some other kind of blackmail, the message is the same every time. Pay up, or else. At this stage, it’s too late to start thinking about any of the options described above that were available to the organization, that would have stopped the attack in its earliest stages. There is only one dilemma. “To pay or not to pay” – that is the question.

Often, people believe their payment troubles are over after the ransom payment stage, but unfortunately, it’s just beginning to scratch the surface…

8. Clean-up

Efforts are made to try to secure the vulnerabilities which allowed the attack to happen initially – the organization should be conscious that approximately 80% of ransomware victims will in fact be targeted again in the future.

Legacy tools largely fail to shed light on the vulnerabilities which allowed the initial breach. Like searching for a needle in an incomplete haystack, security teams will struggle to find useful information within the limited logs offered by firewalls and IDSs. Antivirus solutions may reveal some known malware but fail to spot novel attack vectors.

With Darktrace’s Cyber AI Analyst, organizations are given full visibility over every stage of the attack, across all coverage areas of their digital estate, taking the mystery out of ransomware attacks. They are also able to see the actions that would have been taken to halt the attack by Darktrace RESPOND.

9. Recovery

The organization begins attempts to return its digital environment to order. Even if it has paid for a decryption key, many files may remain encrypted or corrupted. Beyond the costs of the ransom payment, network shutdowns, business disruption, remediation efforts, and PR setbacks all incur hefty financial losses.

The victim organization may also suffer additional reputation costs, with 66% of victims reporting a significant loss of revenue following a ransomware attack, and 32% reporting losing C-level talent as a direct result from ransomware.

Conclusion

While the high-level stages described above are common in most ransomware attacks, the minute you start looking at the details, you realize every ransomware attack is different.

As many targeted ransomware attacks come through ransomware affiliates, the Tools, Techniques and Procedures (TTPs) displayed during intrusions vary widely, even when the same ransomware malware is used. This means that even comparing two different ransomware attacks using the same ransomware family, you are likely to encounter completely different TTPs. This makes it impossible to predict what tomorrow’s ransomware will look like.

This is the nail in the coffin for traditional tooling which is based on historic attack data. The above examples demonstrate that Self-Learning technology and Autonomous Response is the only solution that stops ransomware at every stage, across email and network.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

October 31, 2024

/

Inside the SOC

Lifting the Fog: Darktrace’s Investigation into Fog Ransomware

Default blog imageDefault blog image

Introduction to Fog Ransomware

As ransomware attacks continue to be launched at an alarming rate, Darktrace’s Threat Research team has identified that familiar strains like Akira, LockBit, and BlackBasta remain among the most prevalent threats impacting its customers, as reported in the First 6: Half-Year Threat Report 2024. Despite efforts by law agencies, like dismantling the infrastructure of cybercriminals and shutting down their operations [2], these groups continue to adapt and evolve.

As such, it is unsurprising that new ransomware variants are regularly being created and launched to get round law enforcement agencies and increasingly adept security teams. One recent example of this is Fog ransomware.

What is Fog ransomware?

Fog ransomware is strain that first appeared in the wild in early May 2024 and has been observed actively using compromised virtual private network (VPN) credentials to gain access to organization networks in the education sector in the United States.

Darktrace's detection of Fog Ransomware

In June 2024, Darktrace observed instances of Fog ransomware across multiple customer environments. The shortest time observed from initial access to file encryption in these attacks was just 2 hours, underscoring the alarming speed with which these threat actors can achieve their objectives.

Darktrace identified key activities typical of a ransomware kill chain, including enumeration, lateral movement, encryption, and data exfiltration. In most cases, Darktrace was able to successfully halt the progression Fog attacks in their early stages by applying Autonomous Response actions such as quarantining affected devices and blocking suspicious external connections.

To effectively illustrate the typical kill chain of Fog ransomware, this blog focuses on customer environments that did not have Darktrace’s Autonomous Response enabled. In these cases, the attack progressed unchecked and reached its intended objectives until the customer received Darktrace’s alerts and intervened.

Darktrace’s Coverage of Fog Ransomware

Initial Intrusion

After actors had successfully gained initial access into customer networks by exploiting compromised VPN credentials, Darktrace observed a series of suspicious activities, including file shares, enumeration and extensive scanning. In one case, a compromised domain controller was detected making outgoing NTLM authentication attempts to another internal device, which was subsequently used to establish RDP connections to a Windows server running Hyper-V.

Given that the source was a domain controller, the attacker could potentially relay the NTLM hash to obtain a domain admin Kerberos Ticket Granting Ticket (TGT). Additionally, incoming NTLM authentication attempts could be triggered by tools like Responder, and NTLM hashes used to encrypt challenge response authentication could be abused by offline brute-force attacks.

Darktrace also observed the use of a new administrative credential on one affected device, indicating that malicious actors were likely using compromised privileged credentials to conduct relay attacks.

Establish Command-and-Control Communication (C2)

In many instances of Fog ransomware investigated by Darktrace’s Threat Research team, devices were observed making regular connections to the remote access tool AnyDesk. This was exemplified by consistent communication with the endpoint “download[.]anydesk[.]com” via the URI “/AnyDesk.exe”. In other cases, Darktrace identified the use of another remote management tool, namely SplashTop, on customer servers.

In ransomware attacks, threat actors often use such legitimate remote access tools to establish command-and-control (C2) communication. The use of such services not only complicates the identification of malicious activities but also enables attackers to leverage existing infrastructure, rather than having to implement their own.

Internal Reconnaissance

Affected devices were subsequently observed making an unusual number of failed internal connections to other internal locations over ports such as 80 (HTTP), 3389 (RDP), 139 (NetBIOS) and 445 (SMB). This pattern of activity strongly indicated reconnaissance scanning behavior within affected networks. A further investigation into these HTTP connections revealed the URIs “/nice ports”/Trinity.txt.bak”, commonly associated with the use of the Nmap attack and reconnaissance tool.

Simultaneously, some devices were observed engaging in SMB actions targeting the IPC$ share and the named pipe “srvsvc” on internal devices. Such activity aligns with the typical SMB enumeration tactics, whereby attackers query the list of services running on a remote host using a NULL session, a method often employed to gather information on network resources and vulnerabilities.

Lateral Movement

As attackers attempted to move laterally through affected networks, Darktrace observed suspicious RDP activity between infected devices. Multiple RDP connections were established to new clients, using devices as pivots to propagate deeper into the networks, Following this, devices on multiple networks exhibited a high volume of SMB read and write activity, with internal share drive file names being appended with the “.flocked” extension – a clear sign of ransomware encryption. Around the same time, multiple “readme.txt” files were detected being distributed across affected networks, which were later identified as ransom notes.

Further analysis of the ransom note revealed that it contained an introduction to the Fog ransomware group, a summary of the encryption activity that had been carried out, and detailed instructions on how to communicate with the attackers and pay the ransom.

Packet capture (PCAP) of the ransom note file titled “readme.txt”.
Figure 1: Packet capture (PCAP) of the ransom note file titled “readme.txt”.

Data Exfiltration

In one of the cases of Fog ransomware, Darktrace’s Threat Research team observed potential data exfiltration involving the transfer of internal files to an unusual endpoint associated with the MEGA file storage service, “gfs302n515[.]userstorage[.]mega[.]co[.]nz”.

This exfiltration attempt suggests the use of double extortion tactics, where threat actors not only encrypt victim’s data but also exfiltrate it to threaten public exposure unless a ransom is paid. This often increases pressure on organizations as they face the risk of both data loss and reputational damage caused by the release of sensitive information.

Darktrace’s Cyber AI Analyst autonomously investigated what initially appeared to be unrelated events, linking them together to build a full picture of the Fog ransomware attack for customers’ security teams. Specifically, on affected networks Cyber AI Analyst identified and correlated unusual scanning activities, SMB writes, and file appendages that ultimately suggested file encryption.

Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 2: Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 3: Cyber AI Analysts breakdown of the investigation process between the linked incident events on one customer network.

Safeguarding vulnerable sectors with real-time ransomware mitigation

As novel and fast-moving ransomware variants like Fog persist across the threat landscape, the time taken for from initial compromise to encryption has significantly decreased due to the enhanced skill craft and advanced malware of threat actors. This trend particularly impacts organizations in the education sector, who often have less robust cyber defenses and significant periods of time during which infrastructure is left unmanned, and are therefore more vulnerable to quick-profit attacks.

Traditional security methods may fall short against these sophisticated attacks, where stealthy actors evade detection by human-managed teams and tools. In these scenarios Darktrace’s AI-driven product suite is able to quickly detect and respond to the initial signs of compromise through autonomous analysis of any unusual emerging activity.

When Darktrace’s Autonomous Response capability was active, it swiftly mitigated emerging Fog ransomware threats by quarantining devices exhibiting malicious behavior to contain the attack and blocking the exfiltration of sensitive data, thus preventing customers from falling victim to double extortion attempts.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Qing Hong Kwa (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Ryan Traill (Threat Content Lead)

Darktrace Model Detections:

- Anomalous Server Activity::Anomalous External Activity from Critical Network Device

- Anomalous Connection::SMB Enumeration

- Anomalous Connection::Suspicious Read Write Ratio and Unusual SMB

- Anomalous Connection::Uncommon 1 GiB Outbound

- Anomalous File::Internal::Additional Extension Appended to SMB File

- Compliance::Possible Cleartext LDAP Authentication

- Compliance::Remote Management Tool On Server

- Compliance::SMB Drive Write

- Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

- Compromise::Ransomware::Possible Ransom Note Write

- Compromise::Ransomware::Ransom or Offensive Words Written to SMB

- Device::Attack and Recon Tools

- User::New Admin Credentials on Client

- Unusual Activity::Anomalous SMB Move & Write

- Unusual Activity::Internal Data Transfer

- Unusual Activity::Unusual External Data Transfer

- Unusual Activity::Enhanced Unusual External Data Transfer

Darktrace Model Detections:

- Antigena::Network::External Threat::Antigena Suspicious File Block

- Antigena::Network::External Threat::Antigena Suspicious File Pattern of Life Block

- Antigena::Network::External Threat::Antigena File then New Outbound Block

- Antigena::Network::External Threat::Antigena Ransomware Block

- Antigena::Network::External Threat::Antigena Suspicious Activity Block

- Antigena::Network::Significant Anomaly::Antigena Controlled and Model Breach

- Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Server Block

- Antigena::Network::Significant Anomaly::Antigena Breaches Over Time Block

- Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

- Antigena::Network::Insider Threat::Antigena Internal Data Transfer Block

- Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

- Antigena::Network::Insider Threat::Antigena SMB Enumeration Block

AI Analyst Incident Coverage

- Encryption of Files over SMB

- Scanning of Multiple Devices

- SMB Writes of Suspicious Files

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Data Obfuscation - COMMAND AND CONTROL - T1001

Remote System Discovery - DISCOVERY - T1018

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Network Sniffing - CREDENTIAL ACCESS, DISCOVERY - T1040

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Data Staged - COLLECTION - T1074

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Taint Shared Content - LATERAL MOVEMENT - T1080

File and Directory Discovery - DISCOVERY - T1083

Email Collection - COLLECTION - T1114

Automated Collection - COLLECTION - T1119

Network Share Discovery - DISCOVERY - T1135

Exploit Public-Facing Application - INITIAL ACCESS - T1190

Hardware Additions - INITIAL ACCESS - T1200

Remote Access Software - COMMAND AND CONTROL - T1219

Data Encrypted for Impact - IMPACT - T1486

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

List of Indicators of Compromise (IoCs)

IoC – Type – Description

/AnyDesk.exe - Executable File - Remote Access Management Tool

gfs302n515[.]userstorage[.]mega[.]co[.]nz- Domain - Exfiltration Domain

*.flocked - Filename Extension - Fog Ransomware Extension

readme.txt - Text File - Fog Ransom Note

xql562evsy7njcsngacphcerzjfecwotdkobn3m4uxu2gtqh26newid[.]onion - Onion Domain - Threat Actor’s Communication Channel

References

[1] https://arcticwolf.com/resources/blog/lost-in-the-fog-a-new-ransomware-threat/

[2] https://intel471.com/blog/assessing-the-disruptions-of-ransomware-gangs

[3] https://www.pcrisk.com/removal-guides/30167-fog-ransomware

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore
Your data. Our AI.
Elevate your network security with Darktrace AI