Blog
/
Network
/
December 22, 2021

9 Stages of Ransomware & How AI Responds

Discover the 9 stages of ransomware attacks and how AI responds at each stage. Learn how you can protect your business from cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Dec 2021

Ransomware gets its name by commandeering and holding assets ransom, extorting their owner for money in exchange for discretion and full cooperation in returning exfiltrated data and providing decryption keys to allow business to resume.

Average ransom demands are skyrocketing, rising to $5.3 million in 2021, a 518% increase from the previous year. But the cost of recovering from a ransomware attack typically far exceeds the ransom payments: the average downtime after a ransomware attack is 21 days; and 66% of ransomware victims report a significant loss of revenue following a successful attack.

In this series, we break down this huge topic step by step. Ransomware is a multi-stage problem, requiring a multi-stage solution that autonomously and effectively contains the attack at any stage. Read on to discover how Self-Learning AI and Autonomous Response stops ransomware in its tracks.

1. Initial intrusion (email)

Initial entry – the first stage of a ransomware attack – can be achieved through RDP brute-forcing (exposed Internet service), malicious websites and drive-by downloads, an insider threat with company credentials, system and software vulnerabilities, or any number of other attack vectors.

But the most common initial attack vector is email. An organization’s biggest security weakness is often their people – and attackers are good at finding ways of exploiting this. Well-researched, targeted, legitimate-looking emails are aimed at employees attempting to solicit a reaction: a click of a link, an opening of an attachment, or persuading them to divulge credentials or other sensitive information.

Gateways: Stops what has been seen before

Most conventional email tools rely on past indicators of attack to try and spot the next threat. If an email comes in from a blocklisted IP address or email domain, and uses known malware that has previously been seen in the wild, the attack may be blocked.

But the reality is, attackers know the majority of defenses take this historical approach, and so constantly update their attack infrastructure to bypass these tools. By buying new domains for a few pennies each, or creating bespoke malware with just small adaptions to the code, they can outpace and outsmart the legacy approach taken by a typical email gateway.

Real-world example: Supply chain phishing attack

By contrast, Darktrace’s evolving understanding of ‘normal’ for every email user in the organization enables it to detect subtle deviations that point to a threat – even if the sender or any malicious contents of the email are unknown to threat intelligence. This is what enabled the technology to stop an attack that recently targeted McLaren Racing, with emails sent to a dozen employees in the organization each containing a malicious link. This possible precursor to ransomware bypassed conventional email tools – largely because it was sent from a known supplier – however Darktrace recognized the account hijack and held the email back.

Figure 1: A snapshot of Darktrace’s Threat Visualizer surfacing the malicious email

Read the full case study

2. Initial intrusion (server-side)

With organizations rapidly expanding their Internet-facing perimeter, this increased attack surface has paved the way for a surge in brute-force and server-side attacks.

A number of vulnerabilities against such Internet-facing servers and systems have been disclosed this year, and for attackers, targeting and exploiting public-facing infrastructure is easier than ever – scanning the Internet for vulnerable systems is made simple with tools like Shodan or MassScan.

Attackers may also achieve initial intrusion via RDP brute-forcing or stolen credentials, with attackers often reusing legitimate credentials from previous data dumps. This has much higher precision and is less noisy than a classic brute-force attack.

A lot of ransomware attacks use RDP as an entry vector. This is part of a wider trend of ‘Living off the Land’: using legitimate off-the-shelf tools (abusing RDP, SMB1 protocol, or various command line tools WMI or Powershell) to blur detection and attribution by blending in with typical administrator activity. Ensuring that backups are isolated, configurations are hardened, and systems are patched is not enough – real-time detection of every anomalous action is needed.

Antivirus, firewalls and SIEMs

In cases of malware downloads, endpoint antivirus will detect these if, and only if, the malware has been seen and fingerprinted before. Firewalls typically require configuration on a per-organization basis, and often need to be modified based on the needs of the business. If the attack hits the firewall where a rule or signature does not match it, again, it will bypass the firewall.

SIEM and SOAR tools also look for known malware being downloaded, leverage pre-programmed rules and use pre-programmed responses. While these tools do look for patterns, these patterns are defined in advance, and this approach relies on a new attack to have sufficiently similar traits to attacks that have been seen before.

Real-world example: Dharma ransomware

Darktrace detected a targeted Dharma ransomware attack against a UK organization exploiting an open RDP connection through Internet-facing servers. The RDP server began receiving a large number of incoming connections from rare IP addresses on the Internet. It is highly likely that the RDP credential used in this attack had been compromised at a previous stage – either via common brute-force methods, credential stuffing attacks, or phishing. Indeed, a technique growing in popularity is to buy RDP credentials on marketplaces and skip to initial access.

Figure 2: The model breaches that fired over the course of this attack, including anomalous RDP activity

Unfortunately, in this case, without Autonomous Response installed, the Dharma ransomware attack continued until its final stages, where the security team were forced into the heavy-handed and disruptive action of pulling the plug on the RDP server midway through encryption.

Read the full case study

3. Establish foothold and C2

Whether through a successful phish, a brute-force attack, or some other method, the attacker is in. Now, they make contact with the breached device(s) and establish a foothold.

This stage allows attackers to control subsequent stages of the attack remotely. During these command and control (C2) communications, further malware may also pass from the attacker to the devices. This helps them to establish an even greater foothold within the organization and readies them for lateral movement.

Attackers can adapt malware functionality with an assortment of ready-made plug-ins, allowing them to lie low inside the business undetected. More modern and sophisticated ransomware is able to adapt by itself to the surrounding environment, and operate autonomously, blending in to regular activity even when cut off from its command and control server. These ‘self-sufficient’ ransomware strains pose a big problem for traditional defenses reliant on stopping threats solely on the grounds of its malicious external connections.

Viewing connections in isolation vs understanding the business

Conventional security tools like IDS and firewalls tend to look at connections in isolation rather than in the context of previous and potentially relevant connections, making command and control very difficult to spot.

IDS and firewalls may block ‘known-bad’ domains or use some geo-blocking, but this is where an attacker would likely leverage new infrastructure.

These tools also don’t tend to analyze for things like the periodicity, such as whether a connection is beaconing at a regular or irregular interval, or the age and rarity of the domain in the context of the environment.

With Darktrace’s evolving understanding of the digital enterprise, suspicious C2 connections and the downloads which follow them are spotted, even when conducted using regular programs or methods. The AI technology correlates multiple subtle signs of threat – a small subset of which includes anomalous connections to young and/or unusual endpoints, anomalous file downloads, incoming remote desktop, and unusual data uploads and downloads.

Once they are detected as a threat, Darktrace's Autonomous Response halts these connections and downloads, while allowing normal business activity to continue.

Real-world example: WastedLocker attack

When a WastedLocker ransomware attack hit a US agricultural organization, Darktrace immediately detected the initial unusual SSL C2 activity (based on a combination of destination rarity, JA3 unusualness and frequency analysis). Antigena (on this occasion configured in passive mode, and therefore not granted permission to take autonomous action) suggested instantly blocking the C2 traffic on port 443 and parallel internal scanning on port 135.

Figure 3: The Threat Visualizer reveals the action Antigena would have taken

When beaconing was later observed to bywce.payment.refinedwebs[.]com, this time over HTTP to /updateSoftwareVersion, Antigena escalated its response by blocking the further C2 channels.

Figure 4: Antigena escalates its response

Read the full case study

4. Lateral movement

Once an attacker has established a foothold within an organization, they begin to increase their knowledge of the wider digital estate and their presence within it. This is how they will find and access the files which they will ultimately attempt to exfiltrate and encrypt. It begins reconnaissance: scanning the network; building up a picture of its component devices; identifying the location of the most valuable assets.

Then the attacker begins moving laterally. They infect more devices and look to escalate their privileges – for instance, by obtaining admin credentials – thereby increasing their control over the environment. Once they have obtained authority and presence within the digital estate, they can progress to the final stages of the attack.

Modern ransomware has built-in functions that allow it to search automatically for stored passwords and spread through the network. More sophisticated strains are designed to build themselves differently in different environments, so the signature is constantly changing and it’s harder to detect.

Legacy tools: A blunt response to known threats

Because they rely upon static rules and signatures, legacy solutions struggle to prevent lateral movement and privilege escalation without also impeding essential business operations. Whilst in theory, an organization leveraging firewalls and NAC internally with proper network segmentation and a perfect configuration could prevent cross-network lateral movement, maintaining a perfect balance between protective and disruptive controls is near impossible.

Some organizations rely on Intrusion Prevent Systems (IPS) to deny network traffic when known threats are detected in packets, but as with previous stages, novel malware will evade detection, and this requires the database to be constantly updated. These solutions also sit at the ingress/egress points, limiting their network visibility. An Intrusion Detection System (IDS) may sit out-of-line, but doesn’t have response capabilities.

A self-learning approach

Darktrace’s AI learns ‘self’ for the organization, enabling it to detect suspicious activity indicative of lateral movement, regardless of whether the attacker uses new infrastructure or ‘lives off the land’. Potential unusual activity that Darktrace detects includes unusual scanning activity, unusual SMB, RDP, and SSH activity. Other models that fire at this stage include:

  • Suspicious Activity on High-Risk Device
  • Numeric EXE in SMB Write
  • New or Uncommon Service Control

Autonomous Response then takes targeted action to stop the threat at this stage, blocking anomalous connections, enforcing the infected device’s ‘pattern of life’, or enforcing the group ‘pattern of life’ – automatically clustering devices into peer groups and preventing a device from doing anything its peer group hasn’t done.

Where malicious behavior persists, and only if necessary, Darktrace will quarantine an infected device.

Real-world example: Unusual chain of RDP connections

At an organization in Singapore, one compromised server led to the creation of a botnet, which began moving laterally, predominantly by establishing chains of unusual RDP connections. The server then started making external SMB and RPC connections to rare endpoints on the Internet, in an attempt to find further vulnerable hosts.

Other lateral movement activities detected by Darktrace included the repeated failing attempts to access multiple internal devices over the SMB file-sharing protocol with a range of different usernames, implying brute-force network access attempts.

Figure 5: Darktrace’s Cyber AI Analyst reveals suspicious TCP scanning followed by a suspicious chain of administrative RDP connections

Read the full case study

5. Data exfiltration

In the past, ransomware was simply about encrypting an operating system and network files.

In a modern attack, as organizations insure against malicious encryption by becoming increasingly diligent with data backups, threat actors have moved towards ‘double extortion’, where they exfiltrate key data and destroy backups before the encryption takes place. Exfiltrated data is used to blackmail organizations, with attackers threatening to publish sensitive information online or sell it on to the organization’s competitors if they are not paid.

Modern ransomware variants also look for cloud file storage repositories such as Box, Dropbox, and others.

Many of these incidents aren’t public, because if IP is stolen, organizations are not always legally required to disclose it. However, in the case of customer data, organizations are obligated by law to disclose the incident and face the additional burden of compliance files – and we’ve seen these mount in recent years (Marriot, $23.8 million; British Airways, $26 million; Equifax, $575 million). There’s also the reputational blow associated with having to inform customers that a data breach has occurred.

Legacy tools: The same old story

For those that have been following, the narrative by now will sound familiar: to stop a ransomware attack at this stage, most defenses rely on either pre-programmed definitions of 'bad' or have rules constructed to combat different scenarios put organizations in a risky, never-ending game of cat and mouse.

A firewall and proxy might block connections based on pre-programmed policies based on specific endpoints or data volumes, but it’s likely an attacker will ‘live off the land’ and utilize a service that is generally allowed by the business.

The effectiveness of these tools will vary according to data volumes: they might be effective for ‘smash and grab’ attacks using known malware, and without employing any defense evasion techniques, but are unlikely to spot ‘low and slow’ exfiltration and novel or sophisticated strains.

On the other hand, because by nature it involves a break from expected behavior, even less conspicuous, low and slow data exfiltration is detected by Darktrace and stopped with Darktrace's Autonomos Response. No confidential files are lost, and attackers are unable to extort a ransom payment through blackmail.

Real-world example: Unusual chain of RDP connections

It becomes more difficult to find examples of Darktrace stopping ransomware at these later stages, as the threat is usually contained before it gets this far. This is the double-edged sword of effective security – early containment makes for bad storytelling! However, we can see the effects of a double extortion ransomware attack on an energy company in Canada. The organization had the Enterprise Immune System but no Antigena, and without anyone actively monitoring Darktrace’s AI detections, the attack was allowed to unfold.

The attacker managed to connect to an internal file server and download 1.95TB of data. The device was also seen downloading Rclone software – an open-source tool, which was likely applied to sync data automatically to the legitimate file storage service pCloud. Following the completion of the data exfiltration, the device ‘serverps’ finally began encrypting files on 12 devices with the extension *.06d79000. As with the majority of ransomware incidents, the encryption happened outside of office hours – overnight in local time – to minimize the chance of the security team responding quickly.

Read the full details of the attack

It should be noted that the exact order of the stages 3–5 above is not set in stone, and varies according to attack. Sometimes data is exfiltrated and then there is further lateral movement, and additional C2 beaconing. This entire period is known as the ‘dwell time’. Sometimes it takes place over only a few days, other times attackers may persist for months, slowly gathering more intel and exfiltrating data in a ‘low and slow’ fashion so as to avoid detection from rule-based tools that are configured to flag any single data transfer over a certain threshold. Only through a holistic understanding of malicious activity over time can a technology spot this level of activity and allow the security team to remove the threat before it reaches the latter and most damaging stages of ransomware.

6. Data encryption

Using either symmetric encryption, asymmetric encryption, or a combination of the two, attackers attempt to render as much data unusable in the organization’s network as they can before the attack is detected.

As the attackers alone have access to the relevant decryption keys, they are now in total control of what happens to the organization’s data.

Pre-programmed response and disruption

There are many families of tools that claim to stop encryption in this manner, but each contain blind spots which enable a sophisticated attacker to evade detection at this crucial stage. Where they do take action, it is often highly disruptive, causing major shutdowns and preventing a business from continuing its usual operations.

Internal firewalls prevent clients from accessing servers, so once an attacker has penetrated to servers using any of the techniques outlined above, they have complete freedom to act as they want.

Similarly, antivirus tools look only for known malware. If the malware has not been detected until this point, it is highly unlikely the antivirus will act here.

Stopping encryption autonomously

Even if familiar tools and methods are used to conduct it, Autonomous Response can enforce the normal ‘pattern of life’ for devices attempting encryption, without using static rules or signatures. This action can be taken independently or via integrations with native security controls, maximizing the return on other security investments. With a targeted Autonomous Response, normal business operations can continue while encryption is prevented.

7. Ransom note

It is important to note that in the stages before encryption, this ransomware attack is not yet “ransomware”. Only at this stage does it gets its name.

A ransom note is deployed. The attackers request payment in return for a decryption key and threaten the release of sensitive exfiltrated data. The organization must decide whether to pay the ransom or lose their data, possibly to their competition or the public. The average demand made by ransomware threat actors rose in 2021 to $5.3 million, with meat processing company JBS paying out $11 million and DarkSide receiving over $90 million in Bitcoin payments following the Colonial Pipeline incident.

All of the stages up until this point represent a typical, traditional ransomware attack. But ransomware is shifting from indiscriminate encryption of devices to attackers targeting business disruption in general, using multiple techniques to hold their victims to ransom. Additional methods of extortion include not only data exfiltration, but corporate domain hijack, deletion or encryption of backups, attacks against systems close to industrial control systems, targeting company VIPs… the list goes on.

Sometimes, attackers will just skip straight from stage 2 to 6 and jump straight to extortion. Darktrace recently stopped an email attack which showed an attacker bypassing the hard work and attempting to jump straight to extortion in an email. The attacker claimed to have compromised the organization’s sensitive data, requesting payment in bitcoin for its same return. Whether or not the claims were true, this attack shows that encryption is not always necessary for extortion, and this type of harassment exists in multiple forms.

Figure 6: Darktrace holds back the offending email, protecting the recipient and organization from harm

As with the email example we explored in the first post of this series, Darktrace/Email was able to step in and stop this email where other email tools would have let it through, stopping this potentially costly extortion attempt.

Whether through encryption or some other kind of blackmail, the message is the same every time. Pay up, or else. At this stage, it’s too late to start thinking about any of the options described above that were available to the organization, that would have stopped the attack in its earliest stages. There is only one dilemma. “To pay or not to pay” – that is the question.

Often, people believe their payment troubles are over after the ransom payment stage, but unfortunately, it’s just beginning to scratch the surface…

8. Clean-up

Efforts are made to try to secure the vulnerabilities which allowed the attack to happen initially – the organization should be conscious that approximately 80% of ransomware victims will in fact be targeted again in the future.

Legacy tools largely fail to shed light on the vulnerabilities which allowed the initial breach. Like searching for a needle in an incomplete haystack, security teams will struggle to find useful information within the limited logs offered by firewalls and IDSs. Antivirus solutions may reveal some known malware but fail to spot novel attack vectors.

With Darktrace’s Cyber AI Analyst, organizations are given full visibility over every stage of the attack, across all coverage areas of their digital estate, taking the mystery out of ransomware attacks. They are also able to see the actions that would have been taken to halt the attack by Darktrace RESPOND.

9. Recovery

The organization begins attempts to return its digital environment to order. Even if it has paid for a decryption key, many files may remain encrypted or corrupted. Beyond the costs of the ransom payment, network shutdowns, business disruption, remediation efforts, and PR setbacks all incur hefty financial losses.

The victim organization may also suffer additional reputation costs, with 66% of victims reporting a significant loss of revenue following a ransomware attack, and 32% reporting losing C-level talent as a direct result from ransomware.

Conclusion

While the high-level stages described above are common in most ransomware attacks, the minute you start looking at the details, you realize every ransomware attack is different.

As many targeted ransomware attacks come through ransomware affiliates, the Tools, Techniques and Procedures (TTPs) displayed during intrusions vary widely, even when the same ransomware malware is used. This means that even comparing two different ransomware attacks using the same ransomware family, you are likely to encounter completely different TTPs. This makes it impossible to predict what tomorrow’s ransomware will look like.

This is the nail in the coffin for traditional tooling which is based on historic attack data. The above examples demonstrate that Self-Learning technology and Autonomous Response is the only solution that stops ransomware at every stage, across email and network.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI