Blog
/

Inside the SOC

/
November 20, 2023

Mitigating Sectop RAT: Darktrace's Strategy

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Nov 2023
Read how Darktrace tackled the Sectop Remote Access Trojan. Gain insights into their advanced threat mitigation strategies.

Introduction

As malicious actors across the threat landscape continue to look for new ways to gain unauthorized access to target networks, it is unsurprising to see Remote Access Trojans (RATs) leveraged more and more. These RATs are downloaded discretely without the target’s knowledge, typically through seemingly legitimate software downloads, and are designed to gain highly privileged network credentials, ultimately allowing attackers to have remote control over compromised devices. [1]

SectopRAT is one pertinent example of a RAT known to adopt a number of stealth functions in order to gather and exfiltrate sensitive data from its targets including passwords, cookies, autofill and history data stores in browsers, as well as cryptocurrency wallet details and system hardware information. [2]

In early 2023, Darktrace identified a resurgence of the SectopRAT across customer environments, primarily targeting educational industries located in the United States (US), Europe, the Middle East and Africa (EMEA) and Asia-Pacific (APAC) regions. Darktrace DETECT™ was able to successfully identify suspicious activity related to SectopRAT at the network level, as well as any indicators of post-compromise on customer environments that did not have Darktrace RESPOND™ in place to take autonomous preventative action.

What is SectopRAT?

First discovered in early 2019, the SectopRAT is a .NET RAT that contains information stealing capabilities. It is also known under the alias ‘ArechClient2’, and is commonly distributed through drive-by downloads of illegitimate software and utilizes malvertising, including via Google Ads, to increase the chances of it being downloaded.

The malware’s code was updated at the beginning of 2021, which led to refined and newly implemented features, including command and control (C2) communication encryption with Advanced Encryption Stanard 256 (AES256) and additional commands. SectopRAT also has a function called "BrowserLogging", ultimately sending any actions it conducts on web browsers to its C2 infrastructure. When the RAT is executed, it then connects to a Pastebin associated hostname to retrieve C2 information; the requested file reaches out to get the public IP address of the infected device. To receive commands, it connects to its C2 server primarily on port 15647, although other ports have been highlighted by open source intelligence (OSINT), which include 15678, 15649, 228 and 80. Ultimately, sensitive data data gathered from target networks is then exfiltrated to the attacker’s C2 infrastructure, typically in a JSON file [3].

Darktrace Coverage

During autonomous investigations into affected customer networks, Darktrace DETECT was able to identify SSL connections to the endpoint pastebin[.]com over port 443, followed by failed connections to one of the IPs and ports (i.e., 15647, 15648, 15649) associated with SectopRAT. This resulted in the devices breaching the ‘Compliance/Pastebin and Anomalous Connection/Multiple Failed Connections to Rare Endpoint’ models, respectively.

In some instances, Darktrace observed a higher number of attempted connections that resulted in the additional breach of the model ‘Compromise / Large Number of Suspicious Failed Connections’.

Over a period of three months, Darktrace investigated multiple instances of SectopRAT infections across multiple clients, highlighting indicators of compromise (IoCs) through related endpoints.Looking specififically at one customer’s activity which centred on January 25, 2023, one device was observed initially making suspicious connections to a Pastebin endpoint, 104.20.67[.]143, likely in an attempt to receive C2 information.

Darktrace DETECT recognized this activity as suspicious, causing the 'Compliance / Pastebin' DETECT models to breach. In response to this detection, Darktrace RESPOND took swift action against the Pastebin connections by blocking them and preventing the device from carrying out further connections with Pastebin endpoints. Darktrace RESPOND actions related to blocking Pastebin connections were commonly observed on this device throughout the course of the attack and likely represented threat actors attempting to exfiltrate sensitive data outside the network.

Darktrace UI image
Figure 1: Model breach event log highlighting the Darktrace DETECT model breach ‘Compliance / Pastebin’.

Around the same time, Darktrace observed the device making a large number of failed connections to an unusual exernal location in the Netherlands, 5.75.147[.]135, via port 15647. Darktrace recognized that this endpoint had never previously been observed on the customer’s network and that the frequency of the failed connections could be indicative of beaconing activity. Subsequent investigation into the endpoint using OSINT indicated it had links to malware, though Darktrace’s successful detection did not need to rely on this intelligence.

Darktrace model breach event log
Figure 2: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 5.75.147[.]135 on January 25, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

After these initial set of breaches on January 25, the same device was observed engaging in further external connectivity roughly a month later on February 27, including additional failed connections to the IP 167.235.134[.]14 over port 15647. Once more, multiple OSINT sources revealed that this endpoint was indeed a malicious C2 endpoint.

Darktrace model breach event log 2
Figure 3: Model breach event log highlighting the multiple failed connectiosn to the suspicious IP address, 167.235.134[.]14 on February 27, 2023, causing the Darktrace DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach.

While the initial Darktrace coverage up to this point has highlighted the attempted C2 communication and how DETECT was able to alert on the suspicious activity, Pastebin activity was commonly observed throughout the course of this attack. As a result, when enabled in autonomous response mode, Darktrace RESPOND was able to take swift mitigative action by blocking all connections to Pastebin associated hostnames and IP addresses. These interventions by RESPOND ultimately prevented malicious actors from stealing sensitive data from Darktrace customers.

Darktrace RESPOND action list
Figure 4: A total of nine Darktrace RESPOND actions were applied against suspicious Pastebin activity during the course of the attack.

In another similar case investigated by the Darktrace, multiple devices were observed engaging in external connectivity to another malicious endpoint,  88.218.170[.]169 (AS207651 Hosting technology LTD) on port 15647.  On April 17, 2023, at 22:35:24 UTC, the breach device started making connections; of the 34 attempts, one connection was successful – this connection lasted 8 minutes and 49 seconds. Darktrace DETECT’s Self-Learning AI understood that these connections represented a deviation from the device’s usual pattern of behavior and alerted on the activity with the ‘Multiple Connections to new External TCP Port’ model.

Darktrace model breach event log
Figure 5: Model breach event log highlighting the affected device successfully connecting to the suspicious endpoint, 88.218.170[.]169.
Darktrace advanced search query
Figure 6: Advanced Search query highlighting the one successful connection to the endpoint 88.218.170[.]169 out of the 34 attempted connections.

A few days later, on April 20, 2023, at 12:33:59 (UTC) the source device connected to a Pastebin endpoint, 172.67.34[.]170 on port 443 using the SSL protocol, that had never previously be seen on the network. According to Advanced Search data, the first SSL connection lasted over two hours. In total, the device made 9 connections to pastebin[.]com and downloaded 85 KB of data from it.

Darktrace UI highlighting connections
Figure 7: Screenshot of the Darktrace UI highlighting the affected device making multiple connections to Pastebin and downloading 85 KB of data.

Within the same minute, Darktrace detected the device beginning to make a large number of failed connections to another suspicious endpoints, 34.107.84[.]7 (AS396982 GOOGLE-CLOUD-PLATFORM) via port 15647. In total the affected device was observed initiating 1,021 connections to this malicious endpoint, all occurring over the same port and resulting the failed attempts.

Darktrace advanced search query 2
Figure 8: Advanced Search query highlighting the affected device making over one thousand connections to the suspicious endpoint 34.107.84[.]7, all of which failed.

Conclusion

Ultimately, thanks to its Self-Learning AI and anomaly-based approach to threat detection, Darktrace was able to preemptively identify any suspicious activity relating to SectopRAT at the network level, as well as post-compromise activity, and bring it to the immediate attention of customer security teams.

In addition to the successful and timely detection of SectopRAT activity, when enabled in autonomous response mode Darktrace RESPOND was able to shut down suspicious connections to endpoints used by threat actors as malicious infrastructure, thus preventing successful C2 communication and potential data exfiltration.

In the face of a Remote Access Trojan, like SectopRAT, designed to steal sensitive corporate and personal information, the Darktrace suite of products is uniquely placed to offer organizations full visibility over any emerging activity on their networks and respond to it without latency, safeguarding their digital estate whilst causing minimal disruption to business operations.

Credit to Justin Torres, Cyber Analyst, Brianna Leddy, Director of Analysis

Appendices

Darktrace Model Detection:

  • Compliance / Pastebin
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Failed Connections
  • Anomalous Connection / Multiple Connections to New External TCP Port

List of IoCs

IoC - Type - Description + Confidence

5.75.147[.]135 - IP - SectopRAT C2 Endpoint

5.75.149[.]1 - IP - SectopRAT C2 Endpoint

34.27.150[.]38 - IP - SectopRAT C2 Endpoint

34.89.247[.]212 - IP - SectopRAT C2 Endpoint

34.107.84[.]7 - IP - SectopRAT C2 Endpoint

34.141.16[.]89 - IP - SectopRAT C2 Endpoint

34.159.180[.]55 - IP - SectopRAT C2 Endpoint

35.198.132[.]51 - IP - SectopRAT C2 Endpoint

35.226.102[.]12 - IP - SectopRAT C2 Endpoint

35.234.79[.]173 - IP - SectopRAT C2 Endpoint

35.234.159[.]213 - IP - SectopRAT C2 Endpoint

35.242.150[.]95 - IP - SectopRAT C2 Endpoint

88.218.170[.]169 - IP - SectopRAT C2 Endpoint

162.55.188[.]246 - IP - SectopRAT C2 Endpoint

167.235.134[.]14 - IP - SectopRAT C2 Endpoint

MITRE ATT&CK Mapping

Model: Compliance / Pastebin

ID: T1537

Tactic: EXFILTRATION

Technique Name: Transfer Data to Cloud Account

Model: Anomalous Connection / Multiple Failed Connections to Rare Endpoint

ID: T1090.002

Sub technique of: T1090

Tactic: COMMAND AND CONTROL

Technique Name: External Proxy

ID: T1095

Tactic: COMMAND AND CONTROL

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

Model: Compromise / Large Number of Suspicious Failed Connections

ID: T1571

Tactic: COMMAND AND CONTROL

Technique Name: Non-Standard Port

ID: T1583.006

Sub technique of: T1583

Tactic: RESOURCE DEVELOPMENT

Technique Name: Web Services

Model: Anomalous Connection / Multiple Connections to New External TCP Port

ID: T1095        

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Application Layer Protocol

ID: T1571

Tactic: COMMAND AND CONTROL    

Technique Name: Non-Standard Port

References

1.     https://www.techtarget.com/searchsecurity/definition/RAT-remote-access-Trojan

2.     https://malpedia.caad.fkie.fraunhofer.de/details/win.sectop_rat

3.     https://threatfox.abuse.ch/browse/malware/win.sectop_rat

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

October 31, 2024

/

Inside the SOC

Lifting the Fog: Darktrace’s Investigation into Fog Ransomware

Default blog imageDefault blog image

Introduction to Fog Ransomware

As ransomware attacks continue to be launched at an alarming rate, Darktrace’s Threat Research team has identified that familiar strains like Akira, LockBit, and BlackBasta remain among the most prevalent threats impacting its customers, as reported in the First 6: Half-Year Threat Report 2024. Despite efforts by law agencies, like dismantling the infrastructure of cybercriminals and shutting down their operations [2], these groups continue to adapt and evolve.

As such, it is unsurprising that new ransomware variants are regularly being created and launched to get round law enforcement agencies and increasingly adept security teams. One recent example of this is Fog ransomware.

What is Fog ransomware?

Fog ransomware is strain that first appeared in the wild in early May 2024 and has been observed actively using compromised virtual private network (VPN) credentials to gain access to organization networks in the education sector in the United States.

Darktrace's detection of Fog Ransomware

In June 2024, Darktrace observed instances of Fog ransomware across multiple customer environments. The shortest time observed from initial access to file encryption in these attacks was just 2 hours, underscoring the alarming speed with which these threat actors can achieve their objectives.

Darktrace identified key activities typical of a ransomware kill chain, including enumeration, lateral movement, encryption, and data exfiltration. In most cases, Darktrace was able to successfully halt the progression Fog attacks in their early stages by applying Autonomous Response actions such as quarantining affected devices and blocking suspicious external connections.

To effectively illustrate the typical kill chain of Fog ransomware, this blog focuses on customer environments that did not have Darktrace’s Autonomous Response enabled. In these cases, the attack progressed unchecked and reached its intended objectives until the customer received Darktrace’s alerts and intervened.

Darktrace’s Coverage of Fog Ransomware

Initial Intrusion

After actors had successfully gained initial access into customer networks by exploiting compromised VPN credentials, Darktrace observed a series of suspicious activities, including file shares, enumeration and extensive scanning. In one case, a compromised domain controller was detected making outgoing NTLM authentication attempts to another internal device, which was subsequently used to establish RDP connections to a Windows server running Hyper-V.

Given that the source was a domain controller, the attacker could potentially relay the NTLM hash to obtain a domain admin Kerberos Ticket Granting Ticket (TGT). Additionally, incoming NTLM authentication attempts could be triggered by tools like Responder, and NTLM hashes used to encrypt challenge response authentication could be abused by offline brute-force attacks.

Darktrace also observed the use of a new administrative credential on one affected device, indicating that malicious actors were likely using compromised privileged credentials to conduct relay attacks.

Establish Command-and-Control Communication (C2)

In many instances of Fog ransomware investigated by Darktrace’s Threat Research team, devices were observed making regular connections to the remote access tool AnyDesk. This was exemplified by consistent communication with the endpoint “download[.]anydesk[.]com” via the URI “/AnyDesk.exe”. In other cases, Darktrace identified the use of another remote management tool, namely SplashTop, on customer servers.

In ransomware attacks, threat actors often use such legitimate remote access tools to establish command-and-control (C2) communication. The use of such services not only complicates the identification of malicious activities but also enables attackers to leverage existing infrastructure, rather than having to implement their own.

Internal Reconnaissance

Affected devices were subsequently observed making an unusual number of failed internal connections to other internal locations over ports such as 80 (HTTP), 3389 (RDP), 139 (NetBIOS) and 445 (SMB). This pattern of activity strongly indicated reconnaissance scanning behavior within affected networks. A further investigation into these HTTP connections revealed the URIs “/nice ports”/Trinity.txt.bak”, commonly associated with the use of the Nmap attack and reconnaissance tool.

Simultaneously, some devices were observed engaging in SMB actions targeting the IPC$ share and the named pipe “srvsvc” on internal devices. Such activity aligns with the typical SMB enumeration tactics, whereby attackers query the list of services running on a remote host using a NULL session, a method often employed to gather information on network resources and vulnerabilities.

Lateral Movement

As attackers attempted to move laterally through affected networks, Darktrace observed suspicious RDP activity between infected devices. Multiple RDP connections were established to new clients, using devices as pivots to propagate deeper into the networks, Following this, devices on multiple networks exhibited a high volume of SMB read and write activity, with internal share drive file names being appended with the “.flocked” extension – a clear sign of ransomware encryption. Around the same time, multiple “readme.txt” files were detected being distributed across affected networks, which were later identified as ransom notes.

Further analysis of the ransom note revealed that it contained an introduction to the Fog ransomware group, a summary of the encryption activity that had been carried out, and detailed instructions on how to communicate with the attackers and pay the ransom.

Packet capture (PCAP) of the ransom note file titled “readme.txt”.
Figure 1: Packet capture (PCAP) of the ransom note file titled “readme.txt”.

Data Exfiltration

In one of the cases of Fog ransomware, Darktrace’s Threat Research team observed potential data exfiltration involving the transfer of internal files to an unusual endpoint associated with the MEGA file storage service, “gfs302n515[.]userstorage[.]mega[.]co[.]nz”.

This exfiltration attempt suggests the use of double extortion tactics, where threat actors not only encrypt victim’s data but also exfiltrate it to threaten public exposure unless a ransom is paid. This often increases pressure on organizations as they face the risk of both data loss and reputational damage caused by the release of sensitive information.

Darktrace’s Cyber AI Analyst autonomously investigated what initially appeared to be unrelated events, linking them together to build a full picture of the Fog ransomware attack for customers’ security teams. Specifically, on affected networks Cyber AI Analyst identified and correlated unusual scanning activities, SMB writes, and file appendages that ultimately suggested file encryption.

Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 2: Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 3: Cyber AI Analysts breakdown of the investigation process between the linked incident events on one customer network.

Safeguarding vulnerable sectors with real-time ransomware mitigation

As novel and fast-moving ransomware variants like Fog persist across the threat landscape, the time taken for from initial compromise to encryption has significantly decreased due to the enhanced skill craft and advanced malware of threat actors. This trend particularly impacts organizations in the education sector, who often have less robust cyber defenses and significant periods of time during which infrastructure is left unmanned, and are therefore more vulnerable to quick-profit attacks.

Traditional security methods may fall short against these sophisticated attacks, where stealthy actors evade detection by human-managed teams and tools. In these scenarios Darktrace’s AI-driven product suite is able to quickly detect and respond to the initial signs of compromise through autonomous analysis of any unusual emerging activity.

When Darktrace’s Autonomous Response capability was active, it swiftly mitigated emerging Fog ransomware threats by quarantining devices exhibiting malicious behavior to contain the attack and blocking the exfiltration of sensitive data, thus preventing customers from falling victim to double extortion attempts.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Qing Hong Kwa (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Ryan Traill (Threat Content Lead)

Darktrace Model Detections:

- Anomalous Server Activity::Anomalous External Activity from Critical Network Device

- Anomalous Connection::SMB Enumeration

- Anomalous Connection::Suspicious Read Write Ratio and Unusual SMB

- Anomalous Connection::Uncommon 1 GiB Outbound

- Anomalous File::Internal::Additional Extension Appended to SMB File

- Compliance::Possible Cleartext LDAP Authentication

- Compliance::Remote Management Tool On Server

- Compliance::SMB Drive Write

- Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

- Compromise::Ransomware::Possible Ransom Note Write

- Compromise::Ransomware::Ransom or Offensive Words Written to SMB

- Device::Attack and Recon Tools

- User::New Admin Credentials on Client

- Unusual Activity::Anomalous SMB Move & Write

- Unusual Activity::Internal Data Transfer

- Unusual Activity::Unusual External Data Transfer

- Unusual Activity::Enhanced Unusual External Data Transfer

Darktrace Model Detections:

- Antigena::Network::External Threat::Antigena Suspicious File Block

- Antigena::Network::External Threat::Antigena Suspicious File Pattern of Life Block

- Antigena::Network::External Threat::Antigena File then New Outbound Block

- Antigena::Network::External Threat::Antigena Ransomware Block

- Antigena::Network::External Threat::Antigena Suspicious Activity Block

- Antigena::Network::Significant Anomaly::Antigena Controlled and Model Breach

- Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Server Block

- Antigena::Network::Significant Anomaly::Antigena Breaches Over Time Block

- Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

- Antigena::Network::Insider Threat::Antigena Internal Data Transfer Block

- Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

- Antigena::Network::Insider Threat::Antigena SMB Enumeration Block

AI Analyst Incident Coverage

- Encryption of Files over SMB

- Scanning of Multiple Devices

- SMB Writes of Suspicious Files

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Data Obfuscation - COMMAND AND CONTROL - T1001

Remote System Discovery - DISCOVERY - T1018

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Network Sniffing - CREDENTIAL ACCESS, DISCOVERY - T1040

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Data Staged - COLLECTION - T1074

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Taint Shared Content - LATERAL MOVEMENT - T1080

File and Directory Discovery - DISCOVERY - T1083

Email Collection - COLLECTION - T1114

Automated Collection - COLLECTION - T1119

Network Share Discovery - DISCOVERY - T1135

Exploit Public-Facing Application - INITIAL ACCESS - T1190

Hardware Additions - INITIAL ACCESS - T1200

Remote Access Software - COMMAND AND CONTROL - T1219

Data Encrypted for Impact - IMPACT - T1486

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

List of Indicators of Compromise (IoCs)

IoC – Type – Description

/AnyDesk.exe - Executable File - Remote Access Management Tool

gfs302n515[.]userstorage[.]mega[.]co[.]nz- Domain - Exfiltration Domain

*.flocked - Filename Extension - Fog Ransomware Extension

readme.txt - Text File - Fog Ransom Note

xql562evsy7njcsngacphcerzjfecwotdkobn3m4uxu2gtqh26newid[.]onion - Onion Domain - Threat Actor’s Communication Channel

References

[1] https://arcticwolf.com/resources/blog/lost-in-the-fog-a-new-ransomware-threat/

[2] https://intel471.com/blog/assessing-the-disruptions-of-ransomware-gangs

[3] https://www.pcrisk.com/removal-guides/30167-fog-ransomware

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore
Your data. Our AI.
Elevate your network security with Darktrace AI