Blog
/
/
February 9, 2023

How Preventative Security Measures Reduce Cyber Risk

Learn how implementing preventative security measures can effectively reduce cyber risk in your organization. Read our blog to stay ahead of potential threats.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2023

Organizations must constantly contend with cyber threats and vulnerabilities because the risks to their digital assets are real. As a result, organizations engage in cyber risk management practices to protect the confidentiality, integrity, and availability of those assets. The need for such measures is clear and many overlapping methods are available, but are the current practices producing the intended results? 

In addition to questioning whether the current practices yield results, organizations should also consider the growing challenges those practices face. For example, threat actors are launching more sophisticated attacks, leveraging AI and automation, and targeting cloud deployments and MFA software. At the same time, many cyber security teams face challenges from reduced budgets, limited staffing, and major initiatives such as cloud migrations and merger and acquisition activities.

Current Risk Management Practices Fall Short 

Recent research from IDC found that 78% of cyber security leaders consider identifying high-risk assets, both people and technology, to be of moderate or high importance. Some methods for identifying these risks include pentesting, red teaming, breach and attack simulations, vulnerability scans, and attack surface management. 

However, effectively carrying out these tasks is easier said than done. They require resources, coordination, and buy-in from IT, cyber security, and compliance departments. And even when teams are able to perform these preventative security tests, the relevance and value of the results are often short-lived due to the dynamic nature of today’s digital architectures. This fleeting relevance is particularly concerning since the IDC InfoBrief found that only 24-31% of companies across all industries can continuously run preventative exercises like pentests. 

Finally, even when a company runs a pentest, it may not yield useful recommendations. For example, IDC reported that only 34% of companies feel like pentesting and red teaming exercises provide them with actionable insights on where and how to harden their defenses. That means that for most security teams, investing in these activities does not provide a return in risk reduction. 

Overall, we can infer from the IDC InfoBrief’s findings that current, mainstream cyber risk management practices provide time-limited value, and they often do not go far enough to provide actionable insights for managing risk. 

Using AI to Promote Risk Reduction 

Darktrace’s Research & Development team sought to create a solution that would better help security teams manage risk by providing improved evaluations and clear guidance. To that end, they incorporated these capabilities into Darktrace PREVENT™. 

PREVENT is made up of two products. The first is Darktrace PREVENT/Attack Surface Management™ (ASM), which monitors an organization’s attack surface for vulnerabilities and risks. It can search beyond known assets, typically surfacing 30-50% more assets than an organization realizes it has. With this capability, it can also identify shadow IT and brand abuse. 

The other product is Darktrace PREVENT/End-to-End™ (E2E), which uses Self-Learning AI to determine every possible attack path in the internal system. It can also measure the potential security impact of each asset, meaning it can prioritize targets with higher value. 

As PREVENT monitors the external attack surface and internal attack paths, it generates understandable reports for security teams, including prioritized lists of actionable insights. This real-time risk-prioritized insight enables security teams to proactively and efficiently manage their risk. 

PREVENT also reduces risk autonomously, without the human security team. When combined with Darktrace’s detection and response capabilities in the Cyber AI Loop™, the AI will increase the sensitivity and protection around an organization’s high-value assets and the likely attack paths identified by PREVENT. 

Most importantly, since PREVENT is powered by AI, it performs all these risk-reducing activities continuously, providing more frequent outputs to security teams. In these ways, PREVENT helps security teams preempt known and unknown attacks and achieve a high level of protection, even with a limited budget and staff. 

Since the tool was launched last year, many organizations have already integrated PREVENT into their broader cyber risk management programs.

“PREVENT is an incredibly helpful way to understand risk, particularly when comparing changes over time,” said a Vice President of IT Operations & Cybersecurity in the facilities management industry. “Understanding vulnerabilities is one thing, but actually being able to digest and prioritize them is even better.”

The IDC InfoBrief found that traditional approaches to preventative security measures are not sufficient to reduce risk. These point protections lose effectiveness with dynamic digital infrastructure and, in most cases, do not yield clear and actionable insights. Instead, the InfoBrief recommends a holistic approach to risk management, with continuous monitoring powered by AI. PREVENT and the Cyber AI Loop encapsulate this recommended approach using Self-Learning AI to identify vulnerable assets and harden security around them. 

For more insights, download the full IDC report here.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI