See how AI can assist human security teams and think logically to manage cyber incidents efficiently in situations where variables are fast-moving. Read more!
Within cyber security, crises are a regular occurrence. Whether due to the ever-changing tactics of threat actors or the emergence of new vulnerabilities, security teams find themselves under significant pressure and frequently find themselves in what psychologists term "crisis states."1
A crisis state refers to an internal state marked by confusion and anxiety to such an extent that previously effective coping mechanisms give way to ineffective decision-making and behaviors.2
Given the prevalence of crises in the field of cyber security, practitioners are more prone to consistently making illogical choices due to the intense pressure they experience. They also grapple with a constant influx of rapidly changing information, the need for swift decision-making, and the severe consequences of errors in judgment. They are often asked to assess hundreds of variables and uncertain factors.
The frequency of crisis states is expected to rise as generative AI empowers cyber criminals to accelerate the speed, scale, and sophistication of their attacks.
Why is it so challenging to operate effectively and efficiently during a crisis state? Several factors come into play.
Firstly, individuals are inclined to rely on their instincts, rendering them susceptible to cognitive biases. This makes it increasingly difficult to assimilate new information, process it appropriately, and arrive at logical decisions. Since crises strike unexpectedly and escalate rapidly into new unknowns, responders experience heightened stress, doubt and insecurity when deciding on a course of action.
These cognitive biases manifest in various forms. For instance, confirmation bias prompts people to seek out information that aligns with their pre-existing beliefs, while hindsight bias makes past events seem more predictable in light of present context and information.
Crises also have a profound impact on information processing and decision-making. People tend to simplify new information and often cling to the initial information they receive rather than opting for the most rational decision.
For instance, if an organization has successfully thwarted a ransomware attack in the past, a defender might assume that employing the same countermeasures will suffice for a subsequent attack. However, ransomware tactics are constantly evolving, and a subsequent attack could employ different strategies that evade the previous defenses. In a crisis state, individuals may revert to their prior strategy instead of adapting based on the latest information.
Given there are deeply embedded psychological tendencies and hard-wired decision-making processes leading to a reduction in logic during a crisis, humans need support from technology that does not suffer from the same limitations, particularly in the post-incident phase, where stress levels go into overdrive.
In the era of rapidly evolving novel attacks, security teams require a different approach: AI.
AI can serve as a valuable tool to augment human decision-making, from detection to incident response and mitigation. This is precisely why Darktrace introduced HEAL, which leverages self-learning AI to assist teams in increasing their cyber resilience and managing live incidents, helping to alleviate the cognitive burden they face.
Darktrace HEAL™ learns from your environment, including data points from real incidents and generates simulations to identify the most effective approach for remediation and restoring normal operations. This reduces the overwhelming influx of information and facilitates more effective decision-making during critical moments.
Furthermore, HEAL offers security teams the opportunity to safely simulate realistic attacks within their own environment. Using specific data points from the native environment, simulated incidents prepare security teams for a variety of circumstances which can be reviewed on a regular basis to encourage effective habit forming and reduce cognitive biases from a one-size-fits-all approach. This allows them to anticipate how attacks might unfold and better prepare themselves psychologically for potential real-world incidents.
With the right models and data, AI can significantly mitigate human bias by providing remediation recommendations grounded in evidence and providing proportionate responses based on empirical evidence rather than personal interpretations or instincts. It can act as a guiding light through the chaos of an attack, providing essential support to human security teams.
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Survey findings: AI Cyber Threats are a Reality, the People are Acting Now
Artificial intelligence is changing the cybersecurity field as fast as any other, both on the offensive and defensive side. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is out now.
Nearly 74% of participants say AI-powered threats are a major challenge for their organization and 90% expect these threats to have a significant impact over the next one to two years, a slight increase from last year. These statistics highlight that AI is not just an emerging risk but a present and evolving one.
As attackers harness AI to automate and scale their operations, security teams must adapt just as quickly. Organizations that fail to prioritize AI-specific security measures risk falling behind, making proactive defense strategies more critical than ever.
Some of the most pressing AI-driven cyber threats include:
AI-powered social engineering: Attackers are leveraging AI to craft highly personalized and convincing phishing emails, making them harder to detect and more likely to bypass traditional defenses.
More advanced attacks at speed and scale: AI lowers the barrier for less skilled threat actors, allowing them to launch sophisticated attacks with minimal effort.
Attacks targeting AI systems: Cybercriminals are increasingly going after AI itself, compromising machine learning models, tampering with training data, and exploiting vulnerabilities in AI-driven applications and APIs.
Safe and secure use of AI
AI is having an effect on the cyber-threat landscape, but it also is starting to impact every aspect of a business – from marketing to HR to operations. The accessibility of AI tools for employees improves workflows, but also poses risks like data privacy violations, shadow AI, and violation of industry regulations.
How are security practitioners accommodating for this uptick in AI use across business?
Among survey participants 45% of security practitioners say they had already established a policy on the safe and secure use of AI and around 50% are in discussions to do so.
While almost all participants acknowledge that this is a topic that needs to be addressed, the gap between discussion and execution could underscore a need for greater insight, stronger leadership commitment, and adaptable security frameworks to keep pace with AI advancements in the workplace. The most popular actions taken are:
Implemented security controls to prevent unwanted exposure of corporate data when using AI technology (67%)
Implemented security controls to protect against other threats/risks associated with using AI technology (62%)
This year specifically, we see further action being taken with the implementation of security controls, training, and oversight.
For a more detailed breakdown that includes results based on industry and organizational size, download the full report here.
AI threats are rising, but security teams still face major challenges
78% of CISOs say AI-powered cyber-threats are already having a significant impact on their organization, a 5% increase from last year.
While cyber professionals feel more prepared for AI powered threats than they did 12 months ago, 45% still say their organization is not adequately prepared—down from 60% last year.
Despite this optimism, key challenges remain, including:
A shortage of personnel to manage tools and alerts
Gaps in knowledge and skills related to AI-driven countermeasures
Confidence in traditional security tools vs. new AI based tools
This year, 73% of survey participants expressed confidence in their security team’s proficiency in using AI within their tool stack, marking an increase from the previous year.
However, only 50% of participants have confidence in traditional cybersecurity tools to detect and block AI-powered threats. In contrast, 75% of participants are confident in AI-powered security solutions for detecting and blocking such threats and attacks.
As leading organizations continue to implement and optimize their use of AI, they are incorporating it into an increasing number of workflows. This growing familiarity with AI is likely to boost the confidence levels of practitioners even further.
The data indicates a clear trend towards greater reliance on AI-powered security solutions over traditional tools. As organizations become more adept at integrating AI into their operations, their confidence in these advanced technologies grows.
This shift underscores the importance of staying current with AI advancements and ensuring that security teams are well-trained in utilizing these tools effectively. The increasing confidence in AI-driven solutions reflects their potential to enhance cybersecurity measures and better protect against sophisticated threats.
The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.
Darktrace's Early Detection of the Latest Ivanti Exploits
As reported in Darktrace’s 2024 Annual Threat Report, the exploitation of Common Vulnerabilities and Exposures (CVEs) in edge infrastructure has consistently been a significant concern across the threat landscape, with internet-facing assets remaining highly attractive to various threat actors.
What are the latest vulnerabilities in Ivanti products?
In early January 2025, two new vulnerabilities were disclosed in Ivanti CS and PS, as well as their Zero Trust Access (ZTA) gateway products.
CVE-2025-0282: A stack-based buffer overflow vulnerability. Successful exploitation could lead to unauthenticated remote code execution, allowing attackers to execute arbitrary code on the affected system [1]
CVE-2025-0283: When combined with CVE-2025-0282, this vulnerability could allow a local authenticated attacker to escalate privileges, gaining higher-level access on the affected system [1]
Ivanti also released a statement noting they are currently not aware of any exploitation of CVE-2025-0283 at the time of disclosure [1].
Darktrace coverage of Ivanti
The Darktrace Threat Research team investigated the new Ivanti vulnerabilities across their customer base and discovered suspicious activity on two customer networks. Indicators of Compromise (IoCs) potentially indicative of successful exploitation of CVE-2025-0282 were identified as early as December 2024, 11 days before they had been publicly disclosed by Ivanti.
Case 1: December 2024
Authentication with a Privileged Credential
Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024, when a customer device was observed logging into the network via SMB using the credential “svc_negbackups”, before authenticating with the credential “svc_negba” via RDP.
This likely represented a threat actor attempting to identify vulnerabilities within the system or application and escalate their privileges from a basic user account to a more privileged one. Darktrace / NETWORK recognized that the credential “svc_negbackups” was new for this device and therefore deemed it suspicious.
Figure 1: Darktrace / NETWORK’s detection of the unusual use of a new credential.
Likely Malicious File Download
Shortly after authentication with the privileged credential, Darktrace observed the device performing an SMB write to the C$ share, where a likely malicious executable file, ‘DeElevate64.exe’ was detected. While this is a legitimate Windows file, it can be abused by malicious actors for Dynamic-Link Library (DLL) sideloading, where malicious files are transferred onto other devices before executing malware. There have been external reports indicating that threat actors have utilized this technique when exploiting the Ivanti vulnerabilities [2].
Figure 2: Darktrace’s detection the SMB write of the likely malicious file ‘DeElevate64.exe’ on December 29, 2024.
Shortly after, a high volume of SMB login failures using the credential “svc_counteract-ext” was observed, suggesting potential brute forcing activity. The suspicious nature of this activity triggered an Enhanced Monitoring model alert that was escalated to Darktrace’s Security Operations Center (SOC) for further investigation and prompt notification, as the customer was subscribed to the Security Operations Support service. Enhanced Monitoring are high-fidelity models detect activities that are more likely to be indicative of compromise
Suspicious Scanning and Internal Reconnaissance
Darktrace then went on to observe the device carrying out network scanning activity as well as anomalous ITaskScheduler activity. Threat actors can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The same device was also seen carrying out uncommon WMI activity.
Figure 3: Darktrace’s detection of a suspicious network scan from the compromised device.
Figure 4: Further information on the suspicious scanning activity retrieved by Cyber AI Analyst, including total number of connections and ports scanned.
Figure 5: Darktrace’s detection of a significant spike in WMI activity represented by DCE_RPC protocol request increases at the time, with little to no activity observed one week either side.
Case 2: January 2025
Suspicious File Downloads
On January 13, 2025, Darktrace began to observe activity related to the exploitation of CVE-2025-0282 on the network of another customer, with one in particular device attempting to download likely malicious files.
Firstly, Darktrace observed the device making a GET request for the file “DeElevator64.dll” hosted on the IP 104.238.130[.]185. The device proceeded to download another file, this time “‘DeElevate64.exe”. from the same IP. This was followed by the download of “DeElevator64.dll”, similar to the case observed in December 2024. External reporting indicates that this DLL has been used by actors exploiting CVE-2025-0282 to sideload backdoor into infected systems [2]
Figure 6: Darktrace’s detection of the download of the suspicious file “DeElevator64.dll” on January 13, 2025.
Suspicious Internal Activity
Just like the previous case, on January 15, the same device was observed making numerous internal connections consistent with network scanning activity, as well as DCE-RPC requests.
Just a few minutes later, Darktrace again detected the use of a new administrative credential, observing the following details:
The hostname observed by Darktrace, “DESKTOP-1JIMIV3,” has also been identified by other external vendors and was associated with a remote computer name seen accessing compromised accounts [2].
Darktrace also observed the device performing an SMB write of an additional file, “to.bat,” which may have represented another malicious file loaded from the DLL files that the device had downloaded earlier. It is possible this represented the threat actor attempting to deploy a remote scheduled task.
Figure 7: Darktrace’s detection of SMB Write of the suspicious file “to.bat”.
Further investigation revealed that the device was likely a Veeam server, with its MAC address indicating it was a VMware device. It also appeared that the Veeam server was capturing activities referenced from the hostname DESKTOP-1JIMIV3. This may be analogous to the remote computer name reported by external researchers as accessing accounts [2]. However, this activity might also suggest that while the same threat actor and tools could be involved, they may be targeting a different vulnerability in this instance.
Autonomous Response
In this case, the customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device. This action allows a device to make its usual connections while blocking any that deviate from expected behavior. These mitigative actions by Darktrace ensured that the compromise was promptly halted, preventing any further damage to the customer’s environment.
If the previous blog in January 2024 was a stark reminder of the threat posed by malicious actors exploiting Internet-facing assets, the recent activities surrounding CVE-2025-0282 and CVE-2025-0283 emphasize this even further.
Based on the telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated .
These activities included the download of suspicious files such as “DeElevate64.exe” and “DeElevator64.dll” potentially used by attackers to sideload backdoors into infected systems. The suspicious hostname DESKTOP-1JIMIV3 was also observed and appears to be associated with a remote computer name seen accessing compromised accounts. These activities are far from exhaustive, and many more will undoubtedly be uncovered as threat actors evolve.
Fortunately, Darktrace was able to swiftly detect and respond to suspicious network activity linked to the latest Ivanti vulnerabilities, sometimes even before these vulnerabilities were publicly disclosed.
Credit to: Nahisha Nobregas, Senior Cyber Analyst, Emma Foulger, Principle Cyber Analyst, Ryan Trail, Analyst Content Lead and the Darktrace Threat Research Team