Blog
/

Inside the SOC

/
April 26, 2023

Gozi ISFB Malware Detection Insights and Analysis

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Apr 2023
Learn how Darktrace detected the Gozi ISFB malware, a type of banking trojan, with Self-Learning AI. Stay informed about the latest cybersecurity threats.

Mirroring the overall growth of the cybersecurity landscape and the advancement of security tool capabilities, threat actors are continuously forced to keep pace. Today, threat actors are bringing novel malware into the wild, creating new attack vectors, and finding ways to avoid the detection of security tools. 

One notable example of a constantly adapting type of malware can be seen with banking trojans, a type of malware designed to steal confidential information, such as banking credentials, used by attackers for financial gain. Gozi-ISFB is a widespread banking trojan that has previously been referred to as ‘the malware with a thousand faces’ and, as it name might suggest, has been known under various names such as Gozi, Ursnif, Papras and Rovnix to list a few.

Between November 2022 and January 2023, a rise in Gozi-ISFB malware related activity was observed across Darktrace customer environments and was investigated by the Darktrace Threat Research team. Leveraging its Self-Learning AI, Darktrace was able to identify activity related to this banking trojan, regardless of the attack vectors or delivery methods utilized by threat actors.

We have moderate to high confidence that the series of activities observed is associated with Gozi-ISFB malware and high confidence in the indicators of compromise identified which are related to the post-compromise activities from Gozi-ISFB malware. 

Gozi-ISFB Background

The Gozi-ISFB malware was first observed in 2011, stemming from the source code of another family of malware, Gozi v1, which in turn borrowed source code from the Ursnif malware strain.  

Typically, the initial access payloads of Gozi-ISFB would require an endpoint to enable a macro on their device, subsequently allowing a pre-compiled executable file (.exe) to be gathered from an attacker-controlled server, and later executed on the target device.

However, researchers have recently observed Gozi-ISFB actors using additional and more advanced capabilities to gain access to organizations networks. These capabilities range from credential harvest, surveilling user keystrokes, diverting browser traffic from banking websites, remote desktop access, and the use of domain generation algorithms (DGA) to create command-and-control (C2) domains to avoid the detection and blocking of traditional security tools. 

Ultimately, the goal of Gozi-ISFB malware is to gather confidential information from infected devices by connecting to C2 servers and installing additional malware modules on the network. 

Darktrace Coverage of Gozi-ISFB 

Unlike traditional security approaches, Darktrace DETECT/Network™ can identify malicious activity because Darktrace models build an understanding of a device’s usual pattern of behavior, rather than using a static list of indicators of compromise (IoCs) or rules and signatures. As such, Darktrace is able to instantly detect compromised devices that deviate from their expected behavioral patterns, engaging in activity such as unusual SMB connections or connecting to newly created malicious endpoints or C2 infrastructure. In the event that Darktrace detects malicious activity, it would automatically trigger an alert, notifying the customer of an ongoing security concern. 

Regarding the Gozi-ISFB attack process, initial attack vectors commonly include targeted phishing campaigns, where the recipient would receive an email with an attached Microsoft Office document containing macros or a Zip archive file. Darktrace frequently observes malicious emails like this across the customer base and is able to autonomously detect and action them using Darktrace/Email™. In the following cases, the clients who had Darktrace/Email did not have evidence of compromise through their corporate email infrastructure, suggesting devices were likely compromised via the access of personal email accounts. In other cases, the customers did not have Darktrace/Email enabled on their networks.

Upon downloading and opening the malicious attachment included in the phishing email, the payload subsequently downloads an additional .exe or dynamic link library (DLL) onto the device. Following this download, the malware will ultimately begin to collect sensitive data from the infected device, before exfiltrating it to the C2 server associated with Gozi-ISFB. Darktrace was able to demonstrate and detect the retrieval of Gozi-ISFB malware, as well as subsequent malicious communication on multiple customer environments. 

In some attack chains observed, the infected device made SMB connections to the rare external endpoint ’62.173.138[.]28’ via port 445. Darktrace recognized that the device used unusual credentials for this destination endpoint and further identified it performing SMB reads on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace also observed that the device downloaded the executable file ‘entrat.exe’ from this connection as can be seen in Figure 1.

Figure 1: Model breach event log showing an infected device making SMB read actions on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace observed the device downloading the executable file ‘entrat.exe’ from this connection.

Subsequently, the device performed a separate SMB login to the same external endpoint using a credential identical to the device's name. Shortly after, the device performed a SMB directory query from the root share drive for the file path to the same endpoint. 

Figure 2:SMB directory query from the root share drive for the file path to the same endpoint, ’62.173.138[.]28’.

In Gozi-ISFB compromises investigated by the Threat Research team, Darktrace commonly observed model breaches for ‘Multiple HTTP POSTs to Rare Hostname’ and the use of the Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)’ user agent. 

Devices were additionally observed making external connections over port 80 (TCP, HTTP) to endpoints associated with Gozi-ISFB. Regarding these connections, C2 communication was observed used configurations of URI path and resource file extension that claimed to be related to images within connections that were actually GET or POST request URIs. This is a commonly used tactic by threat actors to go under the radar and evade the detection of security teams.  

An example of this type of masqueraded URI can be seen below:

In another similar example investigated by the Threat Research team, Darktrace detected similar external connectivity associated with Gozi-ISFB malware. In this case, DETECT identified external connections to two separate hostnames, namely ‘gameindikdowd[.]ru’ and ‘jhgfdlkjhaoiu[.]su’,  both of which have been associated to Gozi-ISFB by OSINT sources. This specific detection included HTTP beaconing connections to endpoint, gameindikdowd[.]ru .

Details observed from this event: 

Destination IP: 134.0.118[.]203

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

The same device later made anomalous HTTP POST requests to a known Gozi-ISFB endpoint, jhgfdlkjhaoiu[.]su. 

Details observed:

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

Figure 3: Packet Capture (PCAP) with the device conducting anomalous HTTP POST requests to a Gozi-ISFB related IOC, ‘jhgfdlkjhaoiu[.]su’.

Conclusions 

With constantly changing attack infrastructure and new methods of exploitation tested and leveraged hour upon hour, it is critical for security teams to employ tools that help them stay ahead of the curve to avoid critical damage from compromise.  

Faced with a notoriously adaptive malware strain like Gozi-ISFB, Darktrace demonstrated its ability to autonomously detect malicious activity based upon more than just known IoCs and attack vectors. Despite the multitude of different attack vectors utilized by threat actors, Darktrace was able to detect Gozi-ISFB activity at various stages of the kill chain using its anomaly-based detection to identify unusual activity or deviations from normal patterns of life. Using its Self-Learning AI, Darktrace successfully identified infected devices and brought them to the immediate attention of customer security teams, ultimately preventing infections from leading to further compromise.  

The Darktrace suite of products, including DETECT/Network, is uniquely placed to offer customers an unrivaled level of network security that can autonomously identify and respond to arising threats against their networks in real time, preventing suspicious activity from leading to damaging network compromises.

Credit to: Paul Jennings, Principal Analyst Consultant and the Threat Research Team

Appendices

List of IOCs

134.0.118[.]203 - IP Address - Gozi-ISFB C2 Endpoint

62.173.138[.]28 - IP Address - Gozi-ISFB  C2 Endpoint

45.130.147[.]89 - IP Address - Gozi-ISFB  C2 Endpoint

94.198.54[.]97 - IP Address - Gozi-ISFB C2 Endpoint

91.241.93[.]111 - IP Address - Gozi-ISFB  C2 Endpoint

89.108.76[.]56 - IP Address - Gozi-ISFB  C2 Endpoint

87.106.18[.]141 - IP Address - Gozi-ISFB  C2 Endpoint

35.205.61[.]67 - IP Address - Gozi-ISFB  C2 Endpoint

91.241.93[.]98 - IP Address - Gozi-ISFB  C2 Endpoint

62.173.147[.]64 - IP Address - Gozi-ISFB C2 Endpoint

146.70.113[.]161 - IP Address - Gozi-ISFB  C2 Endpoint 

iujdhsndjfks[.]ru - Hostname - Gozi-ISFB C2 Hostname

reggy505[.]ru - Hostname - Gozi-ISFB  C2 Hostname

apr[.]intoolkom[.]at - Hostname - Gozi-ISFB  C2 Hostname

jhgfdlkjhaoiu[.]su - Hostname - Gozi-ISFB  C2 Hostname

gameindikdowd[.]ru - Hostname - Gozi-ISFB  Hostname

chnkdgpopupser[.]at - Hostname – Gozi-ISFB C2 Hostname

denterdrigx[.]com - Hostname – Gozi-ISFB C2 Hostname

entrat.exe - Filename – Gozi-ISFB Related Filename

Darktrace Model Coverage

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Compromise / Agent Beacon (Medium Period)

Anomalous File / Application File Read from Rare Endpoint

Device / Suspicious Domain

Mitre Attack and Mapping

Tactic: Application Layer Protocol: Web Protocols

Technique: T1071.001

Tactic: Drive-by Compromise

Technique: T1189

Tactic: Phishing: Spearphishing Link

Technique: T1566.002

Model Detection

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname - T1071.001

Anomalous Connection / Posting HTTP to IP Without Hostname - T1071.001

Anomalous Connection / New User Agent to IP Without Hostname - T1071.001

Compromise / Agent Beacon (Medium Period) - T1071.001

Anomalous File / Application File Read from Rare Endpoint - N/A

Device / Suspicious Domain - T1189, T1566.002

References

https://threatfox.abuse.ch/browse/malware/win.isfb/

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.fortinet.com/blog/threat-research/new-variant-of-ursnif-continuously-targeting-italy#:~:text=Ursnif%20(also%20known%20as%20Gozi,Italy%20over%20the%20past%20year

https://medium.com/csis-techblog/chapter-1-from-gozi-to-isfb-the-history-of-a-mythical-malware-family-82e592577fef

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article
Use cases
No items found.
Core coverages

More in this series

No items found.

Blog

/

September 6, 2024

/

Inside the SOC

Lifting the Fog: Darktrace’s Investigation into Fog Ransomware

Default blog imageDefault blog image

Introduction to Fog Ransomware

As ransomware attacks continue to be launched at an alarming rate, Darktrace’s Threat Research team has identified that familiar strains like Akira, LockBit, and BlackBasta remain among the most prevalent threats impacting its customers, as reported in the First 6: Half-Year Threat Report 2024. Despite efforts by law agencies, like dismantling the infrastructure of cybercriminals and shutting down their operations [2], these groups continue to adapt and evolve.

As such, it is unsurprising that new ransomware variants are regularly being created and launched to get round law enforcement agencies and increasingly adept security teams. One recent example of this is Fog ransomware.

What is Fog ransomware?

Fog ransomware is strain that first appeared in the wild in early May 2024 and has been observed actively using compromised virtual private network (VPN) credentials to gain access to organization networks in the education sector in the United States.

Darktrace's detection of Fog Ransomware

In June 2024, Darktrace observed instances of Fog ransomware across multiple customer environments. The shortest time observed from initial access to file encryption in these attacks was just 2 hours, underscoring the alarming speed with which these threat actors can achieve their objectives.

Darktrace identified key activities typical of a ransomware kill chain, including enumeration, lateral movement, encryption, and data exfiltration. In most cases, Darktrace was able to successfully halt the progression Fog attacks in their early stages by applying Autonomous Response actions such as quarantining affected devices and blocking suspicious external connections.

To effectively illustrate the typical kill chain of Fog ransomware, this blog focuses on customer environments that did not have Darktrace’s Autonomous Response enabled. In these cases, the attack progressed unchecked and reached its intended objectives until the customer received Darktrace’s alerts and intervened.

Darktrace’s Coverage of Fog Ransomware

Initial Intrusion

After actors had successfully gained initial access into customer networks by exploiting compromised VPN credentials, Darktrace observed a series of suspicious activities, including file shares, enumeration and extensive scanning. In one case, a compromised domain controller was detected making outgoing NTLM authentication attempts to another internal device, which was subsequently used to establish RDP connections to a Windows server running Hyper-V.

Given that the source was a domain controller, the attacker could potentially relay the NTLM hash to obtain a domain admin Kerberos Ticket Granting Ticket (TGT). Additionally, incoming NTLM authentication attempts could be triggered by tools like Responder, and NTLM hashes used to encrypt challenge response authentication could be abused by offline brute-force attacks.

Darktrace also observed the use of a new administrative credential on one affected device, indicating that malicious actors were likely using compromised privileged credentials to conduct relay attacks.

Establish Command-and-Control Communication (C2)

In many instances of Fog ransomware investigated by Darktrace’s Threat Research team, devices were observed making regular connections to the remote access tool AnyDesk. This was exemplified by consistent communication with the endpoint “download[.]anydesk[.]com” via the URI “/AnyDesk.exe”. In other cases, Darktrace identified the use of another remote management tool, namely SplashTop, on customer servers.

In ransomware attacks, threat actors often use such legitimate remote access tools to establish command-and-control (C2) communication. The use of such services not only complicates the identification of malicious activities but also enables attackers to leverage existing infrastructure, rather than having to implement their own.

Internal Reconnaissance

Affected devices were subsequently observed making an unusual number of failed internal connections to other internal locations over ports such as 80 (HTTP), 3389 (RDP), 139 (NetBIOS) and 445 (SMB). This pattern of activity strongly indicated reconnaissance scanning behavior within affected networks. A further investigation into these HTTP connections revealed the URIs “/nice ports”/Trinity.txt.bak”, commonly associated with the use of the Nmap attack and reconnaissance tool.

Simultaneously, some devices were observed engaging in SMB actions targeting the IPC$ share and the named pipe “srvsvc” on internal devices. Such activity aligns with the typical SMB enumeration tactics, whereby attackers query the list of services running on a remote host using a NULL session, a method often employed to gather information on network resources and vulnerabilities.

Lateral Movement

As attackers attempted to move laterally through affected networks, Darktrace observed suspicious RDP activity between infected devices. Multiple RDP connections were established to new clients, using devices as pivots to propagate deeper into the networks, Following this, devices on multiple networks exhibited a high volume of SMB read and write activity, with internal share drive file names being appended with the “.flocked” extension – a clear sign of ransomware encryption. Around the same time, multiple “readme.txt” files were detected being distributed across affected networks, which were later identified as ransom notes.

Further analysis of the ransom note revealed that it contained an introduction to the Fog ransomware group, a summary of the encryption activity that had been carried out, and detailed instructions on how to communicate with the attackers and pay the ransom.

Packet capture (PCAP) of the ransom note file titled “readme.txt”.
Figure 1: Packet capture (PCAP) of the ransom note file titled “readme.txt”.

Data Exfiltration

In one of the cases of Fog ransomware, Darktrace’s Threat Research team observed potential data exfiltration involving the transfer of internal files to an unusual endpoint associated with the MEGA file storage service, “gfs302n515[.]userstorage[.]mega[.]co[.]nz”.

This exfiltration attempt suggests the use of double extortion tactics, where threat actors not only encrypt victim’s data but also exfiltrate it to threaten public exposure unless a ransom is paid. This often increases pressure on organizations as they face the risk of both data loss and reputational damage caused by the release of sensitive information.

Darktrace’s Cyber AI Analyst autonomously investigated what initially appeared to be unrelated events, linking them together to build a full picture of the Fog ransomware attack for customers’ security teams. Specifically, on affected networks Cyber AI Analyst identified and correlated unusual scanning activities, SMB writes, and file appendages that ultimately suggested file encryption.

Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 2: Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 3: Cyber AI Analysts breakdown of the investigation process between the linked incident events on one customer network.

Conclusion

As novel and fast-moving ransomware variants like Fog persist across the threat landscape, the time taken for from initial compromise to encryption has significantly decreased due to the enhanced skill craft and advanced malware of threat actors. This trend particularly impacts organizations in the education sector, who often have less robust cyber defenses and significant periods of time during which infrastructure is left unmanned, and are therefore more vulnerable to quick-profit attacks.

Traditional security methods may fall short against these sophisticated attacks, where stealthy actors evade detection by human-managed teams and tools. In these scenarios Darktrace’s AI-driven product suite is able to quickly detect and respond to the initial signs of compromise through autonomous analysis of any unusual emerging activity.

When Darktrace’s Autonomous Response capability was active, it swiftly mitigated emerging Fog ransomware threats by quarantining devices exhibiting malicious behavior to contain the attack and blocking the exfiltration of sensitive data, thus preventing customers from falling victim to double extortion attempts.

Credit to Qing Hong Kwa (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Ryan Traill (Threat Content Lead

Appendices

Darktrace Model Detections:

- Anomalous Server Activity::Anomalous External Activity from Critical Network Device

- Anomalous Connection::SMB Enumeration

- Anomalous Connection::Suspicious Read Write Ratio and Unusual SMB

- Anomalous Connection::Uncommon 1 GiB Outbound

- Anomalous File::Internal::Additional Extension Appended to SMB File

- Compliance::Possible Cleartext LDAP Authentication

- Compliance::Remote Management Tool On Server

- Compliance::SMB Drive Write

- Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

- Compromise::Ransomware::Possible Ransom Note Write

- Compromise::Ransomware::Ransom or Offensive Words Written to SMB

- Device::Attack and Recon Tools

- User::New Admin Credentials on Client

- Unusual Activity::Anomalous SMB Move & Write

- Unusual Activity::Internal Data Transfer

- Unusual Activity::Unusual External Data Transfer

- Unusual Activity::Enhanced Unusual External Data Transfer

Darktrace Model Detections:

- Antigena::Network::External Threat::Antigena Suspicious File Block

- Antigena::Network::External Threat::Antigena Suspicious File Pattern of Life Block

- Antigena::Network::External Threat::Antigena File then New Outbound Block

- Antigena::Network::External Threat::Antigena Ransomware Block

- Antigena::Network::External Threat::Antigena Suspicious Activity Block

- Antigena::Network::Significant Anomaly::Antigena Controlled and Model Breach

- Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Server Block

- Antigena::Network::Significant Anomaly::Antigena Breaches Over Time Block

- Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

- Antigena::Network::Insider Threat::Antigena Internal Data Transfer Block

- Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

- Antigena::Network::Insider Threat::Antigena SMB Enumeration Block

AI Analyst Incident Coverage

- Encryption of Files over SMB

- Scanning of Multiple Devices

- SMB Writes of Suspicious Files

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Data Obfuscation - COMMAND AND CONTROL - T1001

Remote System Discovery - DISCOVERY - T1018

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Network Sniffing - CREDENTIAL ACCESS, DISCOVERY - T1040

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Data Staged - COLLECTION - T1074

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Taint Shared Content - LATERAL MOVEMENT - T1080

File and Directory Discovery - DISCOVERY - T1083

Email Collection - COLLECTION - T1114

Automated Collection - COLLECTION - T1119

Network Share Discovery - DISCOVERY - T1135

Exploit Public-Facing Application - INITIAL ACCESS - T1190

Hardware Additions - INITIAL ACCESS - T1200

Remote Access Software - COMMAND AND CONTROL - T1219

Data Encrypted for Impact - IMPACT - T1486

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

List of Indicators of Compromise (IoCs)

IoC – Type – Description

/AnyDesk.exe - Executable File - Remote Access Management Tool

gfs302n515[.]userstorage[.]mega[.]co[.]nz- Domain - Exfiltration Domain

*.flocked - Filename Extension - Fog Ransomware Extension

readme.txt - Text File - Fog Ransom Note

xql562evsy7njcsngacphcerzjfecwotdkobn3m4uxu2gtqh26newid[.]onion - Onion Domain - Threat Actor’s Communication Channel

References

[1] https://arcticwolf.com/resources/blog/lost-in-the-fog-a-new-ransomware-threat/

[2] https://intel471.com/blog/assessing-the-disruptions-of-ransomware-gangs

[3] https://www.pcrisk.com/removal-guides/30167-fog-ransomware

Continue reading
About the author
Ryan Traill
Threat Content Lead

Blog

/

September 11, 2024

/

Inside the SOC

Decrypting the Matrix: How Darktrace Uncovered a KOK08 Ransomware Attack

Default blog imageDefault blog image

What is Matrix Ransomware?

Matrix is a ransomware family that first emerged in December 2016, mainly targeting small to medium-sized organizations across the globe in countries including the US, Belgium, Germany, Canada and the UK [1]. Although the reported number of Matrix ransomware attacks has remained relatively low in recent years, it has demonstrated ongoing development and gradual improvements to its tactics, techniques, and procedures (TTPs).

How does Matrix Ransomware work?

In earlier versions, Matrix utilized spam email campaigns, exploited Windows shortcuts, and deployed RIG exploit kits to gain initial access to target networks. However, as the threat landscape changed so did Matrix’s approach. Since 2018, Matrix has primarily shifted to brute-force attacks, targeting weak credentials on Windows machines accessible through firewalls. Attackers often exploit common and default credentials, such as “admin”, “password123”, or other unchanged default settings, particularly on systems with Remote Desktop Protocol (RDP) enabled [2] [3].

Darktrace observation of Matrix Ransomware tactics

In May 2024, Darktrace observed an instance of KOK08 ransomware, a specific strain of the Matrix ransomware family, in which some of these ongoing developments and evolutions were observed. Darktrace detected activity indicative of internal reconnaissance, lateral movement, data encryption and exfiltration, with the affected customer later confirming that credentials used for Virtual Private Network (VPN) access had been compromised and used as the initial attack vector.

Another significant tactic observed by Darktrace in this case was the exfiltration of data following encryption, a hallmark of double extortion. This method is employed by attacks to increase pressure on the targeted organization, demanding ransom not only for the decryption of files but also threatening to release the stolen data if their demands are not met. These stakes are particularly high for public sector entities, like the customer in question, as the exposure of sensitive information could result in severe reputational damage and legal consequences, making the pressure to comply even more intense.

Darktrace’s Coverage of Matrix Ransomware

Internal Reconnaissance and Lateral Movement

On May 23, 2024, Darktrace / NETWORK identified a device on the customer’s network making an unusually large number of internal connections to multiple internal devices. Darktrace recognized that this unusual behavior was indicative of internal scanning activity. The connectivity observed around the time of the incident indicated that the Nmap attack and reconnaissance tool was used, as evidenced by the presence of the URI “/nice ports, /Trinity.txt.bak”.

Although Nmap is a crucial tool for legitimate network administration and troubleshooting, it can also be exploited by malicious actors during the reconnaissance phase of the attack. This is a prime example of a ‘living off the land’ (LOTL) technique, where attackers use legitimate, pre-installed tools to carry out their objectives covertly. Despite this, Darktrace’s Self-Learning AI had been continually monitoring devices across the customers network and was able to identify this activity as a deviation from the device’s typical behavior patterns.

The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 1: The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 2: Cyber AI Analyst Investigation into the ‘Scanning of Multiple Devices' incident.

Darktrace subsequently observed a significant number of connection attempts using the RDP protocol on port 3389. As RDP typically requires authentication, multiple connection attempts like this often suggest the use of incorrect username and password combinations.

Given the unusual nature of the observed activity, Darktrace’s Autonomous Response capability would typically have intervened, taking actions such as blocking affected devices from making internal connections on a specific port or restricting connections to a particular device. However, Darktrace was not configured to take autonomous action on the customer’s network, and thus their security team would have had to manually apply any mitigative measures.

Later that day, the same device was observed attempting to connect to another internal location via port 445. This included binding to the server service (srvsvc) endpoint via DCE/RPC with the “NetrShareEnum” operation, which was likely being used to list available SMB shares on a device.

Over the following two days, it became clear that the attackers had compromised additional devices and were actively engaging in lateral movement. Darktrace detected two more devices conducting network scans using Nmap, while other devices were observed making extensive WMI requests to internal systems over DCE/RPC. Darktrace recognized that this activity likely represented a coordinated effort to map the customer’s network and identity further internal devices for exploitation.

Beyond identifying the individual events of the reconnaissance and lateral movement phases of this attack’s kill chain, Darktrace’s Cyber AI Analyst was able to connect and consolidate these activities into one comprehensive incident. This not only provided the customer with an overview of the attack, but also enabled them to track the attack’s progression with clarity.

Furthermore, Cyber AI Analyst added additional incidents and affected devices to the investigation in real-time as the attack unfolded. This dynamic capability ensured that the customer was always informed of the full scope of the attack. The streamlined incident consolidation and real-time updates saved valuable time and resources, enabling quicker, more informed decision-making during a critical response window.

Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.
Figure 3: Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.

File Encryption

On May 28, 2024, another device was observed connecting to another internal location over the SMB filesharing protocol and accessing multiple files with a suspicious extension that had never previously been observed on the network. This activity was a clear sign of ransomware infection, with the ransomware altering the files by adding the “KOK08@QQ[.]COM” email address at the beginning of the filename, followed by a specific pattern of characters. The string consistently followed a pattern of 8 characters (a mix of uppercase and lowercase letters and numbers), followed by a dash, and then another 8 characters. After this, the “.KOK08” extension was appended to each file [1][4].

Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Figure 4: Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Cyber AI Analyst Encryption Information identifying the ransomware encryption activity,
Figure 5: Cyber AI Analyst Encryption Information identifying the ransomware encryption activity.

Data Exfiltration

Shortly after the encryption event, another internal device on the network was observed uploading an unusually large amount of data to the rare external endpoint 38.91.107[.]81 via SSH. The timing of this activity strongly suggests that this exfiltration was part of a double extortion strategy. In this scenario, the attacker not only encrypts the target’s files but also threatens to leak the stolen data unless a ransom is paid, leveraging both the need for decryption and the fear of data exposure to maximize pressure on the victim.

The full impact of this double extortion tactic became evident around two months later when a ransomware group claimed possession of the stolen data and threatened to release it publicly. This development suggested that the initial Matrix ransomware attackers may have sold the exfiltrated data to a different group, which was now attempting to monetize it further, highlighting the ongoing risk and potential for exploitation long after the initial attack.

External data being transferred from one of the involved internal devices during and after the encryption took place.
Figure 6: External data being transferred from one of the involved internal devices during and after the encryption took place.

Unfortunately, because Darktrace’s Autonomous Response capability was not enabled at the time, the ransomware attack was able to escalate to the point of data encryption and exfiltration. However, Darktrace’s Security Operations Center (SOC) was still able to support the customer through the Security Operations Support service. This allowed the customer to engage directly with Darktrace’s expert analysts, who provided essential guidance for triaging and investigating the incident. The support from Darktrace’s SOC team not only ensured the customer had the necessary information to remediate the attack but also expedited the entire process, allowing their security team to quickly address the issue without diverting significant resources to the investigation.

Conclusion

In this Matrix ransomware attack on a Darktrace customer in the public sector, malicious actors demonstrated an elevated level of sophistication by leveraging compromised VPN credentials to gain initial access to the target network. Once inside, they exploited trusted tools like Nmap for network scanning and lateral movement to infiltrate deeper into the customer’s environment. The culmination of their efforts was the encryption of files, followed by data exfiltration via SSH, suggesting that Matrix actors were employing double extortion tactics where the attackers not only demanded a ransom for decryption but also threatened to leak sensitive information.

Despite the absence of Darktrace’s Autonomous Response at the time, its anomaly-based approach played a crucial role in detecting the subtle anomalies in device behavior across the network that signalled the compromise, even when malicious activity was disguised as legitimate.  By analyzing these deviations, Darktrace’s Cyber AI Analyst was able to identify and correlate the various stages of the Matrix ransomware attack, constructing a detailed timeline. This enabled the customer to fully understand the extent of the compromise and equipped them with the insights needed to effectively remediate the attack.

Credit to Christina Kreza (Cyber Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

·       Device / Network Scan

·       Device / Attack and Recon Tools

·       Device / Possible SMB/NTLM Brute Force

·       Device / Suspicious SMB Scanning Activity

·       Device / New or Uncommon SMB Named Pipe

·       Device / Initial Breach Chain Compromise

·       Device / Multiple Lateral Movement Model Breaches

·       Device / Large Number of Model Breaches from Critical Network Device

·       Device / Multiple C2 Model Breaches

·       Device / Lateral Movement and C2 Activity

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / New or Uncommon Service Control

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Data Sent to Rare Domain

·       Anomalous Connection / Uncommon 1 GiB Outbound

·       Unusual Activity / Enhanced Unusual External Data Transfer

·       Unusual Activity / SMB Access Failures

·       Compromise / Ransomware / Suspicious SMB Activity

·       Compromise / Suspicious SSL Activity

List of Indicators of Compromise (IoCs)

·       .KOK08 -  File extension - Extension to encrypted files

·       [KOK08@QQ[.]COM] – Filename pattern – Prefix of the encrypted files

·       38.91.107[.]81 – IP address – Possible exfiltration endpoint

MITRE ATT&CK Mapping

·       Command and control – Application Layer Protocol – T1071

·       Command and control – Web Protocols – T1071.001

·       Credential Access – Password Guessing – T1110.001

·       Discovery – Network Service Scanning – T1046

·       Discovery – File and Directory Discovery – T1083

·       Discovery – Network Share Discovery – T1135

·       Discovery – Remote System Discovery – T1018

·       Exfiltration – Exfiltration Over C2 Channer – T1041

·       Initial Access – Drive-by Compromise – T1189

·       Initial Access – Hardware Additions – T1200

·       Lateral Movement – SMB/Windows Admin Shares – T1021.002

·       Reconnaissance – Scanning IP Blocks – T1595.001

References

[1] https://unit42.paloaltonetworks.com/matrix-ransomware/

[2] https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-matrix-report.pdf

[3] https://cyberenso.jp/en/types-of-ransomware/matrix-ransomware/

[4] https://www.pcrisk.com/removal-guides/10728-matrix-ransomware

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI