ブログ
/
/
February 1, 2021

Explore AI Email Security Approaches with Darktrace

Stay informed on the latest AI approaches to email security. Explore Darktrace's comparisons to find the best solution for your cybersecurity needs!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Feb 2021

Innovations in artificial intelligence (AI) have fundamentally changed the email security landscape in recent years, but it can often be hard to determine what makes one system different to the next. In reality, under that umbrella term there exists a significant distinction in approach which may determine whether the technology provides genuine protection or simply a perceived notion of defense.

One backward-looking approach involves feeding a machine thousands of emails that have already been deemed to be malicious, and training it to look for patterns in these emails in order to spot future attacks. The second approach uses an AI system to analyze the entirety of an organization’s real-world data, enabling it to establish a notion of what is ‘normal’ and then spot subtle deviations indicative of an attack.

In the below, we compare the relative merits of each approach, with special consideration to novel attacks that leverage the latest news headlines to bypass machine learning systems trained on data sets. Training a machine on previously identified ‘known bads’ is only advantageous in certain, specific contexts that don’t change over time: to recognize the intent behind an email, for example. However, an effective email security solution must also incorporate a self-learning approach that understands ‘normal’ in the context of an organization in order to identify unusual and anomalous emails and catch even the novel attacks.

Signatures – a backward-looking approach

Over the past few decades, cyber security technologies have looked to mitigate risk by preventing previously seen attacks from occurring again. In the early days, when the lifespan of a given strain of malware or the infrastructure of an attack was in the range of months and years, this method was satisfactory. But the approach inevitably results in playing catch-up with malicious actors: it always looks to the past to guide detection for the future. With decreasing lifetimes of attacks, where a domain could be used in a single email and never seen again, this historic-looking signature-based approach is now being widely replaced by more intelligent systems.

Training a machine on ‘bad’ emails

The first AI approach we often see in the wild involves harnessing an extremely large data set with thousands or millions of emails. Once these emails have come through, an AI is trained to look for common patterns in malicious emails. The system then updates its models, rules set, and blacklists based on that data.

This method certainly represents an improvement to traditional rules and signatures, but it does not escape the fact that it is still reactive, and unable to stop new attack infrastructure and new types of email attacks. It is simply automating that flawed, traditional approach – only instead of having a human update the rules and signatures, a machine is updating them instead.

Relying on this approach alone has one basic but critical flaw: it does not enable you to stop new types of attacks that it has never seen before. It accepts that there has to be a ‘patient zero’ – or first victim – in order to succeed.

The industry is beginning to acknowledge the challenges with this approach, and huge amounts of resources – both automated systems and security researchers – are being thrown into minimizing its limitations. This includes leveraging a technique called “data augmentation” that involves taking a malicious email that slipped through and generating many “training samples” using open-source text augmentation libraries to create “similar” emails – so that the machine learns not only the missed phish as ‘bad’, but several others like it – enabling it to detect future attacks that use similar wording, and fall into the same category.

But spending all this time and effort into trying to fix an unsolvable problem is like putting all your eggs in the wrong basket. Why try and fix a flawed system rather than change the game altogether? To spell out the limitations of this approach, let us look at a situation where the nature of the attack is entirely new.

The rise of ‘fearware’

When the global pandemic hit, and governments began enforcing travel bans and imposing stringent restrictions, there was undoubtedly a collective sense of fear and uncertainty. As explained previously in this blog, cyber-criminals were quick to capitalize on this, taking advantage of people’s desire for information to send out topical emails related to COVID-19 containing malware or credential-grabbing links.

These emails often spoofed the Centers for Disease Control and Prevention (CDC), or later on, as the economic impact of the pandemic began to take hold, the Small Business Administration (SBA). As the global situation shifted, so did attackers’ tactics. And in the process, over 130,000 new domains related to COVID-19 were purchased.

Let’s now consider how the above approach to email security might fare when faced with these new email attacks. The question becomes: how can you train a model to look out for emails containing ‘COVID-19’, when the term hasn’t even been invented yet?

And while COVID-19 is the most salient example of this, the same reasoning follows for every single novel and unexpected news cycle that attackers are leveraging in their phishing emails to evade tools using this approach – and attracting the recipient’s attention as a bonus. Moreover, if an email attack is truly targeted to your organization, it might contain bespoke and tailored news referring to a very specific thing that supervised machine learning systems could never be trained on.

This isn’t to say there’s not a time and a place in email security for looking at past attacks to set yourself up for the future. It just isn’t here.

Spotting intention

Darktrace uses this approach for one specific use which is future-proof and not prone to change over time, to analyze grammar and tone in an email in order to identify intention: asking questions like ‘does this look like an attempt at inducement? Is the sender trying to solicit some sensitive information? Is this extortion?’ By training a system on an extremely large data set collected over a period of time, you can start to understand what, for instance, inducement looks like. This then enables you to easily spot future scenarios of inducement based on a common set of characteristics.

Training a system in this way works because, unlike news cycles and the topics of phishing emails, fundamental patterns in tone and language don’t change over time. An attempt at solicitation is always an attempt at solicitation, and will always bear common characteristics.

For this reason, this approach only plays one small part of a very large engine. It gives an additional indication about the nature of the threat, but is not in itself used to determine anomalous emails.

Detecting the unknown unknowns

In addition to using the above approach to identify intention, Darktrace uses unsupervised machine learning, which starts with extracting and extrapolating thousands of data points from every email. Some of these are taken directly from the email itself, while others are only ascertainable by the above intention-type analysis. Additional insights are also gained from observing emails in the wider context of all available data across email, network and the cloud environment of the organization.

Only after having a now-significantly larger and more comprehensive set of indicators, with a more complete description of that email, can the data be fed into a topic-indifferent machine learning engine to start questioning the data in millions of ways in order to understand if it belongs, given the wider context of the typical ‘pattern of life’ for the organization. Monitoring all emails in conjunction allows the machine to establish things like:

  • Does this person usually receive ZIP files?
  • Does this supplier usually send links to Dropbox?
  • Has this sender ever logged in from China?
  • Do these recipients usually get the same emails together?

The technology identifies patterns across an entire organization and gains a continuously evolving sense of ‘self’ as the organization grows and changes. It is this innate understanding of what is and isn’t ‘normal’ that allows AI to spot the truly ‘unknown unknowns’ instead of just ‘new variations of known bads.’

This type of analysis brings an additional advantage in that it is language and topic agnostic: because it focusses on anomaly detection rather than finding specific patterns that indicate threat, it is effective regardless of whether an organization typically communicates in English, Spanish, Japanese, or any other language.

By layering both of these approaches, you can understand the intention behind an email and understand whether that email belongs given the context of normal communication. And all of this is done without ever making an assumption or having the expectation that you’ve seen this threat before.

Years in the making

It’s well established now that the legacy approach to email security has failed – and this makes it easy to see why existing recommendation engines are being applied to the cyber security space. On first glance, these solutions may be appealing to a security team, but highly targeted, truly unique spear phishing emails easily skirt these systems. They can’t be relied on to stop email threats on the first encounter, as they have a dependency on known attacks with previously seen topics, domains, and payloads.

An effective, layered AI approach takes years of research and development. There is no single mathematical model to solve the problem of determining malicious emails from benign communication. A layered approach accepts that competing mathematical models each have their own strengths and weaknesses. It autonomously determines the relative weight these models should have and weighs them against one another to produce an overall ‘anomaly score’ given as a percentage, indicating exactly how unusual a particular email is in comparison to the organization’s wider email traffic flow.

It is time for email security to well and truly drop the assumption that you can look at threats of the past to predict tomorrow’s attacks. An effective AI cyber security system can identify abnormalities with no reliance on historical attacks, enabling it to catch truly unique novel emails on the first encounter – before they land in the inbox.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

AI

/

December 2, 2025

Protecting the Experience: How a global hospitality brand stays resilient with Darktrace

Default blog imageDefault blog image

For the Global Chief Technology Officer (CTO) of a leading experiential leisure provider, security is mission critical to protecting a business built on reputation, digital innovation, and guest experience. The company operates large-scale immersive venues across the UK and US, blending activity-driven hospitality with premium dining and vibrant spaces designed for hundreds of guests. With a lean, centrally managed IT team responsible for securing locations worldwide, the challenge is balancing robust cybersecurity with operational efficiency and customer experience.

Brand buzz attracts attention – and attacks

Mid-sized, fast-growing hospitality organizations face a unique risk profile. When systems go down in a venue, the impact is immediate: hundreds of disrupted guest experiences, lost revenue during peak hours, and potential long-term reputation damage. Each time the organization opened a new venue, the surge of marketing buzz attracted attention in local markets and waves of sophisticated cyberattacks, including:

Phishing campaigns leveraging brand momentum to lure employees into clicking on malicious links.

AI-enhanced impersonation using advanced techniques to create AI-generated video calls and deep-researched, contextualized emails  

Fake domains targeting leadership with AI-generated messages that contained insider context gleaned from public information.

“Our endpoint security and antivirus tools were powerless against these sophisticated AI-powered campaigns. We didn’t want to manage incidents anymore. We wanted to prevent them from ever happening.”  - Global CTO

Proactive, preventative security with Darktrace AI

The company’s cybersecurity vision was clear: “Proactive, preventative – that was our mandate,” said the CTO. With a lean and busy IT group, the business evaluated several security solutions using deep-dive workshops. Darktrace proved the best fit for supporting the organization’s proactive mindset, offering:

  • Autonomy without added headcount: Darktrace provided powerful AI-driven detection and autonomous response functions with minimal manual oversight required.
  • Modular adoption: The company could start with core email and network protection and expand into cloud and endpoint coverage, aligning spend with growth.
  • Partnership and responsiveness: “We wanted people we trust, respect, and know will show up when we need them. Darktrace did just that,” said the CTO.
  • Affordability at scale: Darktrace offered reasonable upfront costs plus predictable, sustainable economics as the company and IT infrastructure expanded.  

“The combination of AI capabilities, a scalable model, and a strong engagement team tipped the balance in Darktrace’s favor, and we have not been disappointed,” said the CTO.

Phased deployment builds trust

To minimize disruption to critical hospitality systems like global Point of Sales (POS) terminals and Audio-Visual (AV) infrastructure, deployment was phased:

  1. Observation and human-led response: Initially, Darktrace was deployed in detection-only mode. Alerts were manually reviewed.
  2. Incremental autonomous response: Darktrace Autonomous Response was enabled on select models, taking action on low-risk scenarios. Higher-risk subnets and devices remained under human control.
  3. Full autonomous coverage: With tuning and reinforcement, autonomous response was expanded across domains, trusted to take decisive action in real time. Analysts retained the ability to review and contextualize incidents.

“Darktrace managed the rollout through detailed, professional, and responsive project management – ensuring a smooth, successful adoption and creating a standardized cybersecurity playbook for future venue launches,” said the CTO.  

AI delivers the outcomes that matter  

Measurable efficiency replaces endless alerts

Darktrace autonomous response significantly decreased false alerts and noise. “If it’s quiet, we’re confident there isn’t a problem,” said the CTO. Within six months, Darktrace conducted 3,599 total investigations, detected and contained 320 incidents indicative of an attack, resolved 91% of those events autonomously, and escalated only 9% to human analysts. The efficiency gains were enormous, saving analysts 740 hours on investigations within a single month.  

Precision AI turns inbox chaos into calm

Darktrace Self-Learning AI modeled sender/recipient norms, content/linguistic baselines, and communication patterns unique to the organization’s launch cadence, resulting in:

  • Automated holds and neutralizations of anomalous executive-style messages
  • Rapid detection of novel templates and tone shifts that deviated from the organization’s lived email graph, even when indicators were not yet on any feed
  • Downstream reduction in help-desk escalations tied to suspicious email

Full visibility fuels real-time response

Darktrace gives IT direct visibility without extra licensing, and it surfaces ground truth across every venue, including:

  • Device geolocation and placement drift: Darktrace exposed devices and users operating outside approved zones, prompting new segmentation and access-control policies.
  • Guest Wi-Fi realities: Darktrace AI uncovered high-risk activity on guest networks, like crypto-mining and dark-web traffic, driving stricter VLAN separation and access hygiene.
  • Lateral-movement containment: Autonomous response fenced suspicious activity in real time, buying time for human investigation while keeping POS and AV systems unaffected.

Smarter endpoints for a smarter network

Endpoints once relied on static agents effective only against known signatures. Darktrace’s behavioral models now detect subtle anomalies at the endpoint process level that EDRs often miss, such as misuse of legitimate applications (commonly used in living-off-the-land attacks), unapproved application usage and policy violations. This increases the accuracy and fidelity of network-based investigations by adding endpoint process context alongside existing EDR alerts.

Autonomous response for continuous compliance

Across PCI, GDPR, and cross-border privacy obligations, Darktrace’s native evidencing is helping the team demonstrate control rather than merely assert it:

  • Asset and flow awareness: Knowing “what is where” and “who talks to what” underpins PCI scoping and data-flow diagrams.
  • Layered safeguards: Showing autonomous prevention, network segmentation, and rapid containment supports risk registers and control attestations.
  • Audit-ready artifacts: Investigations and autonomous actions produce artifacts that “tick the box” without additional tooling.  

Defining the next era of resilience with AI

With rapid global expansion underway, the company is using its cybersecurity playbook to streamline and secure future venue launches. In the near term, IT is focused on strengthening prevention, using Darktrace insights to guide new policy updates and infrastructure changes like imposing stricter guest-network posture and refining venue device baselines.

For tech leaders charting their path to proactive cyber defense, the CTO stresses success won’t come from sidestepping AI, but from turning it into a core capability.

“AI isn’t optional – it’s operational. The real risk to your business is trying to out-scale automated adversaries with human speed alone. When applied to the right use case, AI becomes a catalyst for efficiency, resilience, and business growth.” - Global CTO
Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 2, 2025

From Amazon to Louis Vuitton: How Darktrace Detects Black Friday Phishing Attacks

Default blog imageDefault blog image

Why Black Friday Drives a Surge in Phishing Attacks

In recent years, Black Friday has shifted from a single day of online retail sales and discounts to an extended ‘Black Friday Week’, often preceded by weeks of online hype. During this period, consumers are inundated with promotional emails and marketing campaigns as legitimate retailers compete for attention.

Unsurprisingly, this surge in legitimate communications creates an ideal environment for threat actors to launch targeted phishing campaigns designed to mimic legitimate retail emails. These campaigns often employ social engineering techniques that exploit urgency, exclusivity, and consumer trust in well-known brands, tactics designed to entice recipients into opening emails and clicking on malicious links.

Additionally, given the seasonal nature of Black Friday and the ever-changing habits of consumers, attackers adopt new tactics and register fresh domains each year, rather than reusing domains previously flagged as spam or phishing endpoints. While this may pose a challenge for traditional email security tools, it presents no such difficulty for Darktrace / EMAIL and its anomaly-based approach.

In the days and weeks leading up to ‘Black Friday’, Darktrace observed a spike in sophisticated phishing campaigns targeting consumers, demonstrating how attackers combine phycological manipulation with technical evasion to bypass basic security checks during this high-traffic period. This blog showcases several notable examples of highly convincing phishing emails detected and contained by Darktrace / EMAIL in mid to late November 2025.

Darktrace’s Black Friday Detections

Brand Impersonation: Deal Watchdogs’ Amazon Deals

The impersonation major online retailers has become a common tactic in retail-focused attacks, none more so than Amazon, which ranked as the fourth most impersonated brand in 2024, only behind Microsoft, Apple, Google, and Facebook [1]. Darktrace’s own research found Amazon to be the most mimicked brand, making up 80% of phishing attacks in its analysis of global consumer brands.

When faced with an email that appears to come from a trusted sender like Amazon, recipients are far more likely to engage, increasing the success rate of these phishing campaigns.

In one case observed on November 16, Darktrace detected an email with the subject line “NOW LIVE: Amazon’s Best Early Black Friday Deals on Gadgets Under $60”. The email was sent to a customer by the sender ‘Deal Watchdogs’, in what appeared to be an attempt to masquerade as a legitimate discount-finding platform. No evidence indicated that the company was legitimate. In fact, the threat actor made no attempt to create a convincing name, and the domain appeared to be generated by a domain generation algorithm (DGA), as shown in Figure 2.

Although the email was sent by ‘Deal Watchdogs’, it attempted to impersonate Amazon by featuring realistic branding, including the Amazon logo and a shade of orange similar to that used by them for the ‘CLICK HERE’ button and headline text.

Figure 1: The contents of the email observed by Darktrace, featuring authentic-looking Amazon branding.

Darktrace identified that the email, marked as urgent by the sender, contained a suspicious link to a Google storage endpoint (storage.googleapis[.]com), which had been hidden by the text “CLICK HERE”. If clicked, the link could have led to a credential harvester or served as a delivery vector for a malicious payload hosted on the Google storage platform.

Fortunately, Darktrace immediately identified the suspicious nature of this email and held it before delivery, preventing recipients from ever receiving or interacting with the malicious content.

Figure 2: Darktrace / EMAIL’s detection of the malicious phishing email sent to a customer.

Around the same time, Darktrace detected a similar email attempting to spoof Amazon on another customer’s network with the subject line “Our 10 Favorite Deals on Amazon That Started Today”, also sent by ‘Deal Watchdogs,’ suggesting a broader campaign.

Analysis revealed that this email originated from the domain petplatz[.]com, a fake marketing domain previously linked to spam activity according to open-source intelligence (OSINT) [2].

Brand Impersonation: Louis Vuitton

A few days later, on November 20, Darktrace / EMAIL detected a phishing email attempting to impersonate the luxury fashion brand Louis Vuitton. At first glance, the email, sent under the name ‘Louis Vuitton’ and titled “[Black Friday 2025] Discover Your New Favorite Louis Vuitton Bag – Elegance Starts Here”, appeared to be a legitimate Black Friday promotion. However, Darktrace’s analysis uncovered several red flags indicating a elaborate brand impersonation attempt.

The email was not sent by Louis Vuitton but by rskkqxyu@bookaaatop[.]ru, a Russia-based domain never before observed on the customer’s network. Darktrace flagged this as suspicious, noting that .ru domains were highly unusual for this recipient’s environment, further reinforcing the likelihood of malicious intent. Subsequent analysis revealed that the domain had only recently registered and was flagged as malicious by multiple OSINT sources [3].

Figure 3: Darktrace / EMAIL’s detection of the malicious email attempting to spoofLouis Vuitton, originating from a suspicious Russia-based domain.

Darktrace further noted that the email contained a highly suspicious link hidden behind the text “View Collection” and “Unsubscribe,” ensuring that any interaction, whether visiting the supposed ‘handbag store’ or attempting to opt out of marketing emails, would direct recipients to the same endpoint. The link resolved to xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф), a domain confirmed as malicious by multiple OSINT sources [4]. At the time of analysis, the domain was inaccessible, likely due to takedown efforts or the short-lived nature of the campaign.

Darktrace / EMAIL blocked this email before it reached customer inboxes, preventing recipients from interacting with the malicious content and averting any disruption.

Figure 4: The suspicious domain linked in the Louis Vuitton phishing email, now defunct.

Too good to be true?

Aside from spoofing well-known brands, threat actors frequently lure consumers with “too good to be true” luxury offers, a trend Darktrace observed in multiple cases throughout November.

In one instance, Darktrace identified an email with the subject line “[Black Friday 2025] Luxury Watches Starting at $250.” Emails contained a malicious phishing link, hidden behind text like “Rolex Starting from $250”, “Shop Now”, and “Unsubscribe”.

Figure 5: Example of a phishing email detected by Darktrace, containing malicious links concealed behind seemingly innocuous text.

Similarly to the Louis Vuitton email campaign described above, this malicious link led to a .ru domain (hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html), which had been flagged as malicious by multiple sources [5].

Figure 6: Darktrace / EMAIL’s detection of a malicious email promoting a fake luxury watch store, which was successfully held from recipient inboxes.

If accessed, this domain would redirect users to luxy-rox[.]com, a recently created domain (15 days old at the time of writing) that has also been flagged as malicious by OSINT sources [6]. When visited, the redirect domain displayed a convincing storefront advertising high-end watches at heavily discounted prices.

Figure 7: The fake storefront presented upon visiting the redirectdomain, luxy-rox[.]com.

Although the true intent of this domain could not be confirmed, it was likely a scam site or a credential-harvesting operation, as users were required to create an account to complete a purchase. As of the time or writing, the domain in no longer accessible .

This email illustrates a layered evasion tactic: attackers employed multiple domains, rapid domain registration, and concealed redirects to bypass detection. By leveraging luxury branding and urgency-driven discounts, the campaign sought to exploit seasonal shopping behaviors and entice victims into clicking.

Staying Protected During Seasonal Retail Scams

The investigation into these Black Friday-themed phishing emails highlights a clear trend: attackers are exploiting seasonal shopping events with highly convincing campaigns. Common tactics observed include brand impersonation (Amazon, Louis Vuitton, luxury watch brands), urgency-driven subject lines, and hidden malicious links often hosted on newly registered domains or cloud services.

These campaigns frequently use redirect chains, short-lived infrastructure, and psychological hooks like exclusivity and luxury appeal to bypass user scepticism and security filters. Organizations should remain vigilant during retail-heavy periods, reinforcing user awareness training, link inspection practices, and anomaly-based detection to mitigate these evolving threats.

Credit to Ryan Traill (Analyst Content Lead) and Owen Finn (Cyber Analyst)

Appendices

References

1.        https://keepnetlabs.com/blog/top-5-most-spoofed-brands-in-2024

2.        https://www.virustotal.com/gui/domain/petplatz.com

3.        https://www.virustotal.com/gui/domain/bookaaatop.ru

4.        https://www.virustotal.com/gui/domain/xn--80aaae9btead2a.xn--p1ai

5.        https://www.virustotal.com/gui/url/e2b868a74531cd779d8f4a0e1e610ec7f4efae7c29d8b8ab32c7a6740d770897?nocache=1

6.        https://www.virustotal.com/gui/domain/luxy-rox.com

Indicators of Compromise (IoCs)

IoC – Type – Description + Confidence

petplatz[.]com – Hostname – Spam domain

bookaaatop[.]ru – Hostname – Malicious Domain

xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф) – Hostname - Malicious Domain

hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html) – URL – Malicious Domain

luxy-rox[.]com – Hostname -  Malicious Domain

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

Continue reading
About the author
Ryan Traill
Analyst Content Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ