Blog
/
Identity
/
May 25, 2022

Multi-Account Compromise in Office 365

Learn how internal phishing can compromise accounts swiftly & how Darktrace/Apps can prevent future attacks effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Laura Leyland
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2022

In February 2022, Darktrace detected the compromise of three SaaS accounts within a customer’s Office 365 environment. This incident provides an effective use case for highlighting how Darktrace/Apps and Darktrace/Email can work together to alert to unusual logins, app permission changes, new email rules and outbound spam. It also emphasizes an instance where Darktrace RESPOND/Apps could have been set to autonomous mode and stopped additional compromise.

Account Compromise Timeline

February 9 2022

Account A was logged into from a rare IP from Nigeria with the BAV2ROPC user agent which is commonly associated with SaaS account attacks. BAV2ROPC stands for ‘Basic Authentication Version 2 Resource Owner Password Credential’ and is commonly used by old email apps such as iOS Mail. It is often seen in SaaS/email account compromises where accounts have ‘legacy authentication’ enabled. This is because, even if multi-factor authentication (MFA) is activated, legacy protocols like IMAP/POP3 are not configured for MFA and so do not result in an MFA notification being sent.[1][2]

Account A then created a new email rule which was named as a single full stop. Attackers commonly create new email rules to give themselves persistent access by using the ability to forward certain emails to external email accounts they own. This means that even if the account’s password is changed or MFA is turned on, the attacker keeps getting the forwarded emails as long as the rule remains in place. In this case, the attacker configured the new email rule using the following fields and features:

  • AlwaysDeleteOutlookRulesBlob – hides any warning messages when using Outlook on the web or Powershell to edit inbox rules. It is likely that the attacker had a set list of commands to run and didn’t want to be slowed down in the exploitation of the account by having to click confirmation messages.
  • Force – hides warning or confirmation messages.
  • MoveToFolder – moves emails to a folder. This is often used to move bounced emails away from the inbox in order to hide the fact the account is being used to send emails by the attacker.
  • Name – specifies the name of the rule, in this case a single full stop.
  • SubjectOrBodyContainsWords – emails with key words are actioned.
  • StopProcessingRules – determines whether subsequent rules are processed if the conditions of this rule are met. It is likely in this case the attacker set this to false so that any subsequent rules would still be processed to avoid raising suspicion.

Account A was then observed giving permission to the email management app Spike. This was likely to allow the rapid automated exploitation of the compromised account. Attackers want to speed up this process to reduce the time between account compromise and malicious use of the account, thus reducing the time security teams have to respond.

Figure 1: Screenshot from SaaS console showing the timeline of giving consent to the email management application Spike and the creation of the new inbox rule

The account was then observed sending 794 emails over a 15 minute period to both internal and external recipients. These emails shared similar qualities including the same subject line and related phishing links. This mass spam was likely due to the attacker wanting to compromise as many accounts and credentials as possible within the shortest timeframe. The domain of the link sent in the emails was spikenow[.]com and was hidden by the text ‘View Shared Link’. This suggests that the attacker used Spike to send the emails and host the phishing link.

Figure 2: Screenshot of AGE UI showing the spike in outbound messages from the compromised account – the messages all appear to be the same format
Figure 3: Screenshot from Darktrace/Email of the link and text that masked the link: ‘View Shared File’

Within 15 minutes of this large volume of outbound email from Account A, Account B was accessed from the same rare IP located in Nigeria. Account B also created a new email rule which was named a single full stop. In addition to the previous rules, the following rules were observed:

  • From – specifies that emails from certain addresses will be processed by the rule.
  • MarkAsRead – specifies that emails are to be marked as read.

Due to the short timeframe between the phishing emails and the anomalous behavior from Account B, it is possible that Account B was an initial phishing victim.

Figure 4: Screenshot of the SaaS console showing Account B login failures, then successful login and inbox rule creation from the rare Nigerian IP

February 10 2022

The next day, a third account (Account C) was also accessed from the same rare IP. This occurred on two occasions, once with the user agent Mozilla/5.0 and once with BAV2ROPC. After the login at 13:08 with BAV2ROPC, the account gave the same permission as Account A to the email management app Spike. It then created what appears to be the same email rule, named a single full stop. As with Account B, it is possible that this account was compromised by one of the phishing emails sent by Account A.

Figure 5: Timeline of key incidents with Darktrace/Apps actions

Whilst the motive of the threat actor was unclear, this may have been the result of:

  • Credential harvesting for future use against the organization or to sell to a third party.
  • Possible impersonation of compromised users on professional websites (LinkedIn, Indeed) to phish further company accounts:
  • Fake accounts of one user were discovered on LinkedIn.
  • Emails registering for Indeed for this same user were seen during compromise.

How did the attack bypass the rest of the security stack?

  • Compromised Office 365 credentials, combined with the use of the user agent BAV2ROPC meant MFA could not stop the suspicious login.
  • RESPOND was in Human Confirmation Mode and was therefore not confirmed to take autonomous action, showing only the detections. Disabling Account A would likely have prevented the phishing emails and the subsequent compromise of Accounts B and C.
  • The organization was not signed up to Darktrace Proactive Threat Notifications or Ask The Expert services which could have allowed further triage from Darktrace SOC analysts.

Cyber AI Analyst Investigates

Darktrace’s Cyber AI Analyst automates investigations at speed and scale, prioritizing relevant incidents and creating actionable insights, allowing security teams to rapidly understand and act against a threat.

In this case, AI Analyst automatically investigated all three account compromises, saving time for the customer’s security team and allowing them to quickly investigate the incident themselves in more detail. The technology also highlighted some of the viewed files by the compromised accounts which was not immediately obvious from the model breaches alone.

Figure 6: Screenshot of AI Analyst for Account A
Figure 7: Screenshot of AI Analyst for Account B
Figure 8: Screenshot of AI Analyst for Account C

Darktrace RESPOND (Antigena) actions

The organization in question did not have RESPOND/Apps configured in Active Mode, and so it did not take any action in this case. The table below shows the critical defensive actions RESPOND would have taken.[3]

Nonetheless, we can see what actions RESPOND would have taken, and when, had the technology been enabled.

The above tables illustrate that all three users would have been disabled during the incident had RESPOND been active. The highlighted row shows that Account A would have been disabled when the internal phishing emails were sent and possibly then prevented the cascade of compromised email accounts (B and C).

Conclusion

SaaS accounts greatly increase a company’s attack surface. Not only is exploitation of compromised accounts quick, but a single compromised account can easily lead to further compromises via an internal phishing campaign. Together this reinforces the ongoing need for autonomous and proactive security to complement existing IT teams and reduce threats at the point of compromise. Whilst disabling ‘legacy authentication’ for all accounts and providing MFA would give some extra protection, Darktrace/Apps has the ability to block all further infection.

Credit to: Adam Stevens and Anthony Wong for their contributions.

Appendix

List of Darktrace Model Detections

User A – February 9 2022

  • 04:55:51 UTC | SaaS / Access / Suspicious Login User-Agent
  • 04:55:51 UTC | SaaS / Access / Unusual External Source for SaaS Credential Use
  • 04:55:52 UTC | Antigena / SaaS / Antigena Suspicious SaaS and Email Activity Block
  • 04:55:52 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block
  • 14:16:48 UTC | SaaS / Compliance / New Email Rule
  • 14:16:48 UTC | SaaS / Compromise / Unusual Login and New Email Rule
  • 14:16:49 UTC | Antigena / SaaS / Antigena Significant Compliance Activity Block
  • 14:16:49 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block
  • 14:45:06 UTC | IaaS / Admin / Azure Application Administration Activities
  • 14:45:07 UTC | SaaS / Admin / OAuth Permission Grant
  • 14:45:07 UTC | Device / Multiple Model Breaches
  • 14:45:08 UTC | SaaS / Compliance / Multiple Unusual SaaS Activities
  • 15:03:25 UTC | SaaS / Email Nexus / Possible Outbound Email Spam
  • 15:03:25 UTC | SaaS / Compromise / Unusual Login and Outbound Email Spam

User B – February 9 2022

  • 15:18:21 UTC | SaaS / Compliance / New Email Rule
  • 15:18:21 UTC | SaaS / Compromise / Unusual Login and New Email Rule
  • 15:18:22 UTC | Antigena / SaaS / Antigena Significant Compliance Activity Block
  • 15:18:22 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block

User C – February 10 2022

  • 14:25:20 UTC | SaaS / Admin / OAuth Permission Grant
  • 14:38:09 UTC | SaaS / Compliance / New Email Rule
  • 14:38:09 UTC | SaaS / Compromise / Unusual Login and New Email Rule
  • 14:38:10 UTC | Antigena / SaaS / Antigena Significant Compliance Activity Block
  • 14:38:10 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Refrences

1. https://www.ncsc.gov.uk/guidance/phishing#section_3

2. https://www.bleepingcomputer.com/news/security/microsoft-scammers-bypass-office-365-mfa-in-bec-attacks/

3. https://customerportal.darktrace.com/product-guides/main/antigena-saas-inhibitors

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Laura Leyland
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI