Blog
/
Network
/
October 20, 2021

Analyzing the Resurgence of Ryuk Ransomware

Understand the latest developments in Ryuk ransomware and how its return affects organizations facing increased cyber threats.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Oct 2021

In the era of international-scale cyber-warfare, focus has started to move away from small-time cyber thieves toward well-known, well-funded and sometimes government-backed cyber-crime organizations. Cyber-attacks sometimes work on discordant scales, however, and it doesn’t always take big budgets or key players for considerable damage to be dealt.

Numerous stories detail how the criminal and the curious alike have single-handedly breached some of the most secure systems in the world. At the more amusing end, there’s the story of Kristoffer von Hassel who discovered a novel exploit in Microsoft’s Xbox Live system at just five years old. And then of course there are those who hack their way right into promising security careers by breaching systems at major organizations. However, genuine damage has been done by individual threat actors as well.

These might be criminals using second-hand offensive tools, buying botnet armies for as little as $10 on the Dark Web, or using ransomware files downloaded for free. But ultimately, even a single cyber-criminal can inflict crippling damage upon large organizations if they are given the opportunity.

This is especially the case when the tools in their possession have been developed by some of the most notorious names in cyber-crime.

Copycat criminals

In early 2021, Darktrace detected a new instance of the once notorious Ryuk ransomware being launched against a business in the APAC region. The detection was intriguing.

The developers of Ryuk, a prolific cyber-criminal organization given the name ‘Wizard Spider’, had long since abandoned it in favor of a successor called ‘Conti’. Wizard Spider have launched some of the largest cyber-attacks in recent history, allegedly with the support of the Russian government, and are under investigation by Interpol and the FBI. They are not known for using outdated tools.

It soon became clear that this attack was not being launched by Wizard Spider at all, but by small-scale threat actors picking up the tools Wizard Spider left behind. And as the new attackers proved, these tools are still far from defunct.

Ryuk ransomware: A city-stopper for sale

Ryuk ransomware is commonly used to target large enterprise environments, even taking down entire city councils in some instances. Lake City, Florida and the City of Onkaparinga in South Australia are two of its known victims, along with numerous schools and hospitals across the US.

Once active in a system, Ryuk uses a combination of symmetric (AES) and asymmetric (RSA) encryption to encrypt files, disabling Windows’ system restore feature as it does so, and generally demands payment via Bitcoin in return for a private decryption key.

Though Ryuk was not initially sold in the same manner as its predecessor, Hermes, on the Dark Web site ‘exploit[.]in’, it is now believed by some publications that the toolkit must be available somewhere for various threat actors to buy and tailor to their requirements. This explains its recurrence beyond Wizard Spider activities.

New dog, old tricks

Darktrace spotted the new instance of Ryuk during a trial with a real estate business in the APAC region. The first warning sign came when some basic .dat files were downloaded onto one of the business’ devices from an unknown Russian IP address. Darktrace immediately detected that this download was a likely breach and, had Antigena been set up in active mode, would have initiated a targeted response at this early stage.

The .dat files on the infected device allowed the attackers to use RDP (Remote Desktop Protocol) to spread further into the business’ network. Two days after the initial compromise, the threat actor had gained administrative credentials through a bruteforce attack and could begin scanning the network further.

Figure 1: Timeline of the attack

The witching hour

Just an hour after the attacker gained administrative credentials, at approximately 3:30am local time, ransomware files appeared in the business’ network. This timing was not accidental. The attackers knew that the security teams at the target business were home and asleep when the ransomware landed in the small hours of the morning, giving them plenty of time to conduct their attack.

This is precisely the kind of simple tactic which can multiply the scale of an attack without using large budgets or complex toolsets. The Ryuk ransomware rapidly began encrypting corporate files during the night, and by the time the security team returned in the morning, all they could do was shut down the entire network and hope to limit the spread of Ryuk, if only to save a few final devices.

The total attack time, from initial compromise to widespread data encryption, was just two and a half days. Whether due to understaffing or preoccupation, the security team did not find the time in that small window to respond to alerts, and, with Darktrace Antigena in passive mode, the attack was able to go ahead. This business’ need for Autonomous Response, which can protect against old and new attacks around the clock without the need for manual intervention, was painfully apparent.

Autonomous Response: Stop Ryuk before Ryuk stops you

Understanding Ryuk’s history and functionality does little good for organizations when it is still capable of eluding their defenses and catching security teams unawares. Darktrace’s Self-Learning AI is uniquely positioned to address these sophisticated threats, even as they evolve in the hands of different attackers and become unrecognizable to traditional rule-based security approaches.

Utilizing 24/7 Autonomous Response to stop both new and old threats at machine speed gives security teams the best chance of leveling the playing field against attackers. With Darktrace Antigena, the size or status of the attacking organization and their toolset is irrelevant – any anomalous and threatening behavior will be neutralized quickly and accurately, before damage can be done.

Thanks to Darktrace analyst Thomas Nommensen for his insights on the above threat find.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI