Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mike Autrey
Lead Network Administrator at Priefert (Guest Contributor)
Share
25
Apr 2022
Founded in 1964, Priefert Manufacturing has grown into one of the largest farm, ranch, and rodeo equipment manufacturers in the world. With a huge range of equipment in locations that span several acres in the US, it is imperative that all our devices can safely communicate in real time.
We recognize that our biggest vulnerability comes from within – from our own employees. With one misstep or oversight, from a neglected software download to an accidental engagement with a phishing email, a threat actor can get inside our systems and potentially disrupt our business.
A lot of our employees are non-technical, and to continue being productive, we have to accept the risk that comes with giving computer system access to users who are unfamiliar with certain technologies and security protocols.
So, we needed another layer of security that went beyond our existing controls: something that could pick up on any malicious activity within our systems, wherever it may arise and however subtle it may be. Security should never hamper productivity, and we needed technology that could intervene in real time, so that we could keep giving our users access to systems, without having to worry so much about a breach.
As we looked into solutions, we decided to install Darktrace’s AI. We were drawn to the fact that it was effective with virtually any type of technology and had the ability to both detect and take autonomous action against attacks.
Stopping ransomware in its tracks
We had only just begun deploying Antigena, Darktrace’s Autonomous Response technology, when it detected and shut down a ransomware attack.
Still in its learning phase, Darktrace was beginning to understand the ‘pattern of life’ across our digital infrastructure when it discovered strange activity on one of our public-facing servers: a series of highly unusual and suspicious connections.
Alerted to the activity, we went ahead and switched Antigena to Active Mode, and we saw the technology in action: it blocked connections to the suspect IP addresses and allowed me to kill the malware on the server, without further spread. Before the ransomware had the chance to create any real damage, Darktrace had shut it down.
We started to understand the full capacity of the technology: not only could it stop in-progress attacks at machine speed, but it was uncovering activity in our network that was previously invisible to us. If we are hit by another similar attack in the future, with Antigena now fully autonomous in our environment, we know that it will take action on its own, responding to any threat in seconds.
Thwarting phishing attempts
Our experience with Darktrace for SaaS was a similar story. We had just begun rolling out the technology for our Microsoft 365 users when it identified one user account that had been compromised.
At 02:00, a few failed login attempts paired with odd timing prompted Darktrace to flag the account as having unusual user behavior and notify our IT team. Alerted to the situation, we confirmed the account had been hijacked and the threat actor was attempting to send out phishing emails.
Darktrace enabled our team to understand what was going on quickly. With all the information in front of us, we could see that the user did not have multi-factor authentication enabled. They had reused their password for multiple accounts, which meant the attacker was able to get a hold of their credentials. Swiftly, our team attended to the account, halting the outbound emails, and terminating the hacker’s access.
Before Darktrace, we would have never known to activate multi-factor authentication and change the password on this account because we wouldn’t have been aware that the account was exhibiting abnormal behavior in the first place. Previously, until there was a problem, we were left blind to what was going on in our network.
Staying ahead of the threat
As we continue to give our employees more access to new IT systems, we remain confident that Darktrace will neutralize any threat that may arise from a human error before it becomes a crisis. The technology has empowered our team to be proactive instead of reactive – no longer are we reliant on retrospective data and left unaware of a situation until it’s too late.
Without having to go and dig through loads of information, we are notified of potential problems before something or someone in our network presents a problem. We don’t need to wait for any sign of an attack to manifest before we can take action.
The technology has also freed up an extraordinary amount of time for myself, no longer having to focus on manually responding to things that pop up in our systems. I can now spend my time on work I’d like to prioritize, without sacrificing security.
Having a single AI system operate across our entire digital estate – whether it be our network, cloud, or Microsoft 365 users – has only further enhanced the protection Darktrace gives us. It has enabled the technology to absorb huge amounts of data, strengthening its understanding of our environment at the most granular level, so it can pick up on the slightest anomalies indicative of a cyber threat.
And because Darktrace’s AI protects all our digital environments, there are no gaps in protection. Not only can we detect threats that develop in our network, cloud, and email, but we can also now see the full scope of an incident as it progresses across multiple areas of our digital estate. Darktrace shines a light on everything.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mike Autrey
Lead Network Administrator at Priefert (Guest Contributor)
From VPS to Phishing: How Darktrace Uncovered SaaS Hijacks through Virtual Infrastructure Abuse
Darktrace identified coordinated SaaS account compromises across multiple customer environments. The incidents involved suspicious logins from VPS-linked infrastructure followed by unauthorized inbox rule creation and deletion of phishing-related emails. These consistent behaviors across devices point to a targeted phishing campaign leveraging virtual infrastructure for access and concealment. Discover how Darktrace uncovered this activity and what it means for the future of SaaS security.
Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace
This blog examines three real-world cloud-based attacks in Azure and AWS environments, including credential compromise, data exfiltration, and ransomware detonation. Learn how Darktrace’s AI-driven threat detection and Autonomous Response capabilities help organizations defend against evolving threats in complex cloud environments.
Top Eight Threats to SaaS Security and How to Combat Them
SaaS security requires new methods to keep up with evolving threats and business infrastructure. In this blog, learn the top eight threats to identity security and how AI-based solutions can help.
Managing OT Remote Access with Zero Trust Control & AI Driven Detection
The shift toward IT-OT convergence
Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.
This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.
The modernization gap and why visibility alone isn’t enough
The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.
Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.
The risk of unmonitored remote access
This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.
Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.
In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.
The visibility gap: Who’s doing what, and when?
The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.
Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.
As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.
Closing the gaps with zero trust controls and AI‑driven detection
Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.
Zero Trust access controls provide the foundation.By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.
Access control is only one part of the equation
Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.
By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.
Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.
If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.
This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.
Where Zero Trust Access Meets AI‑Driven Oversight:
Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.
Complete security without compromise
We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.
Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.
Product Marketing Manager, OT Security & Compliance
Blog
/
Network
/
November 21, 2025
Xillen Stealer Updates to Version 5 to Evade AI Detection
Introduction
Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.
The update to v4/v5 includes significantly more functionality, including:
Persistence
Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
Kubernetes configs and secrets
Docker scanning
Encryption
Polymorphism
System hooks
Peer-to-Peer (P2P) Command-and-Control (C2)
Single Sign-On (SSO) collector
Time-Based One-Time Passwords (TOTP) and biometric collection
EDR bypass
AI evasion
Interceptor for Two-Factor Authentication (2FA)
IoT scanning
Data exfiltration via Cloud APIs
Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.
Figure 1: Screenshot of the Xillen Stealer portal.
Technical analysis
The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.
Xillen Stealer specifically targets the following wallets and browsers:
AITargetDectection
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.
The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.
While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.
Figure 3: Screenshot of dead code function.
AI Evasion
Figure 4: Screenshot of AI evasion function to create entropy variance.
‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:
Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior
PolymorphicEngine
As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.
Collectors
DevToolsCollector
Figure 5: Screenshot of Kubernetes data function.
The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:
IDE configurations
VS Code, VS Code Insiders, Visual Studio
JetBrains: Intellij, PyCharm, WebStorm
Sublime
Atom
Notepad++
Eclipse
Cloud credentials and configurations
AWS
GCP
Azure
Digital Ocean
Heroku
SSH keys
Docker & Kubernetes configurations
Git credentials
Database connection information
HeidiSQL
Navicat
DBeaver
MySQL Workbench
pgAdmin
API keys from .env files
FTP configs
FileZilla
WinSCP
Core FTP
VPN configurations
OpenVPN
WireGuard
NordVPN
ExpressVPN
CyberGhost
Container persistence
Figure 6: Screenshot of Kubernetes inject function.
Biometric Collector
Figure 7: Screenshot of the ‘BiometricCollector’ function.
The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.
Password Managers
The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.
SSOCollector
The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.
TOTP Collector
The ‘TOTP Collector’ class attempts to collect TOTPs from:
Authy Desktop by locating and reading from Authy.db SQLite databases
Microsoft Authenticator by scanning known application data paths for stored binary files
TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.
Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.
Enterprise Collector
The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:
The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.
Super Extended Application Collector
The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.
Bypass
AppBoundBypass
This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.
Steganography
The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:
Image steganography: LSB-based hiding
NTFS Alternate Data Streams
Windows Registry Keys
Slack space: Writing into unallocated disk cluster space
Polyglot files: Appending archive data to images
Image metadata: Embedding data in EXIF tags
Whitespace encoding: Hiding binary in trailing spaces of text files
Exfiltration
CloudProxy
Figure 8: Screenshot of the ‘CloudProxy’ class.
The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.
P2PEngine
Figure 9: Screenshot of the P2PEngine.
The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.
After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.
Xillen Killers
FIgure 10: Xillen Killers.
Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:
Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
Compromise of doxbin.net in October 2025.
Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site
The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.
Conclusion
While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.
Credit to Tara Gould (Threat Research Lead) Edited by Ryan Traill (Analyst Content Lead)