Blog
/
Network
/
March 22, 2022

Stopping Trickbot: Darktrace's Autonomous Response

Darktrace's autonomous response successfully thwarted a Trickbot intrusion. See how AI played a crucial role in this defense.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tony Jarvis
VP, Field CISO | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Mar 2022

In the lead-up to the 2020 US election, Microsoft and its partners attempted to bring down the pernicious Trickbot malware and reduce election tampering attempts. These efforts were successful, to an extent: the takedown effectively eliminated 94% of Trickbot’s infrastructure and massively reduced its influence in late 2020.

Malware rarely stays dead, however. We discussed previously how the arrests which followed REvil’s widespread attacks in 2021 have done little to disrupt that group’s Ransomware-as-a-Service operation, and how Ryuk ransomware fell into new hands after being abandoned by its creators.

Trickbot has seen a resurrection of even greater proportions. By June 2021, when Darktrace detected a Trickbot intrusion in one of its customer environments, the malware was far from a forgotten, ineffectual strain. It had instead become the most prevalent malware in the world.

It was only due to a last-minute activation of Darktrace’s Autonomous Response that this customer was able to avoid falling victim to a successful ransomware attack. Because it can take action at any stage of an attack, Autonomous Response could interrupt Trickbot even after it had taken root within the digital environment, and successfully prevent the execution of ransomware.

Trickbot takes root

The intrusion took place at a public administration organization in the EMEA region. Prior to Darktrace’s deployment, a single internal domain controller had been compromised by Trickbot, which then lay dormant for at least a month. By the time the malware began to take action, however, Darktrace’s AI had been deployed. Despite entering a compromised environment, the AI was able to differentiate between benign and malicious activity and immediately detect the threat, though at this point Autonomous Response was configured to not take any action without human confirmation.

Darktrace detected the compromised domain controller uploading a malicious DLL file – very likely Trickbot itself – to approximately 280 devices in the organization over SMB, and then using Windows Management Instrumentation (WMI) to configure and execute it. Despite Trickbot’s age and infamy, tools dependent on threat intelligence remained silent at this stage.

Figure 1: Timeline of the attack

How attackers resurrected Trickbot

Trickbot’s modular nature makes it a perfect gateway for a host of criminal activities, and keeps the malware itself adaptable and therefore hard to defend against. The action coordinated by Microsoft successfully took down the known IP addresses of multiple Trickbot command and control (C2) servers and temporarily prevented Trickbot operators from purchasing or leasing new ones. But it did not take long for the Trickbot infrastructure to be rebuilt, and in May and June of 2021 it was again deemed the most prevalent malware in a Global Threat Index.

Trickbot’s ability to evolve and circumvent existing OSINT was demonstrated in this attack, as Darktrace noticed 160 of the 280 compromised devices it had detected beginning to connect to a host of new C2 endpoints. None of these had OSINT associating them with malicious activity, but Darktrace considered the activity highly unusual in the context of previous behavior, and the security team were notified of this potential high-severity incident via a Proactive Threat Notification (PTN).

The attackers laid low for over a month, before the compromised devices were detected downloading masqueraded executable files and conducting anomalous scanning activity. These files were likely Ryuk ransomware payloads. By spacing out these stages of the attack, the threat actors made it harder for human teams to connect the dots and reveal the full scope of the threat.

Darktrace’s Cyber AI Analyst, which investigates and triages threats across entire digital environments, was able to piece these disparate events into a single attack narrative, however, and deliver a further PTN. Due to the severity of the situation, the customer submitted to Darktrace’s Ask the Expert (ATE) service to receive assistance with their threat response.

Figure 2: Cyber AI Analyst investigates suspicious executable files being spread to multiple internal devices

Autonomous Response shuts down a late-stage attack

Having understood the scale of the threat they now faced, the team activated Autonomous Response to take autonomous action to contain the threat. If Autonomous Response had been in place from the beginning, it would have stopped this attack in its earliest stages, while it was restricted to a single compromised domain controller. Crucially, however, Autonomous Response can take action at any stage of a ransomware attack.

Even at this late stage, it was able to halt the attackers and prevent Ryuk from being executed on the network. The AI blocked a chain of malicious activities including SMB enumeration, networking scanning, and suspicious outbound connections in seconds, disrupting the attack while enforcing normal business operations to ensure that the rest of the company’s work could continue uninterrupted.

With their C2 communications and lateral movement efforts disrupted, the attackers were unable to execute Ryuk, and the attack came to an end just in time. It is likely that this last-minute activation of Autonomous Response avoided widespread data encryption and possibly exfiltration, as well as the numerous costs which follow a successful ransomware attack even if a ransom is paid.

Deploying Autonomous Response before it’s too late

Despite only being activated once the attack had taken root, Darktrace was still able to distinguish malicious activity from normal business operations and stop the threat without causing disruption. Next time an attack strikes, this organization will be prepared with Autonomous Response in fully autonomous mode from the outset, ready to take action at the first sign of an emerging threat and minimize their remediation efforts.

The journey to fully autonomous security requires organizations to build trust in AI’s accuracy and decision-making. What this journey looks like for each individual organization will differ, but the need for technology that can autonomously respond to emerging threats is not a lesson any organization ought to learn the hard way.

Thanks to Darktrace analyst Sam Lister for his insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tony Jarvis
VP, Field CISO | Darktrace

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI