Learn from two leaders in their fields about cyber risks in Formula 1 and McLaren's unique approach. Explore cyber risks and strategies that set McLaren apart.
Nicole Eagan, Darktrace’s Chief Strategy Officer and AI Officer, catches up with Zak Brown, CEO at McLaren Racing, on innovation, cyber-attacks, and what sets McLaren apart.
Nicole: Thanks for joining us, Zak. I’d like to start this off by speaking about innovation. As you know, the pace of change is very rapid in both cyber security and Formula 1. At Darktrace, our aim is to outpace the attackers, which we do by heavily investing in our R&D and our AI specifically. As the CEO of McLaren Racing, how important is innovation?
Zak: Innovation is our life blood. To give you an idea: if you took the car that qualified first in the first race of the season, and you didn’t touch it throughout the year, it would come last in the final race of the season. We’re developing a new part for our race car about every 15 minutes, 365 days a year. These facts illustrate the pace of development here at McLaren. As we say in motor racing – if you’re sitting still, you’re actually going backwards.
Nicole: Talk about pace of innovation! We’ve observed at Darktrace that in any industry, no two organizations operate the same way. In fact, the closer you get, the more you realize how different they are. This is one of the reasons we think taking a self-learning approach to security is so important. In your view, what sets McLaren apart from other teams?
Zak: Whilst all teams are pushing for a similar outcome – to be the fastest racing team in the world –we go about it in different ways. At McLaren, it’s all about the people, as well as understanding and leaning into our technology and technology partners.
Nicole: As you know, cyber-attacks can trickle over into business disruption – and sometimes even effect physical operations. What impact can a cyber-attack have for McLaren Racing?
Zak: There are so many ways a cyber-attack could disrupt our racing and our business. Wherever we’re racing around the world, it all starts back at our factory in the UK. Everything is real time, and if a cyber-attack were to shut down our technology, we wouldn’t be able to go onto the track. We also need to protect our Intellectual Property and our supply chain, as a lot of critical information is being passed back and forth between us and our suppliers.
A real-life incident I can recall happened in 1998, well before we became partners with Darktrace. Someone tapped into our radio communications as our driver at the time, Mika Häkkinen, was leading the Australian Grand Prix. The attacker told Mika to pit, and he did! It almost cost him the race. These actions have consequences that can cost us on track performance which in turn, can lead to much bigger business implications.
Nicole: That’s an amazing story, and really shows how extreme the disruption can be. As a high-profile target, I’m aware that you also received a personal attack at the Italian Grand Prix last season. Can you share the story of this attack with us?
Zak: I get about 300 emails a day, and I’m constantly on the run. Fortunately, Darktrace stopped the attack before it even hit my desk. When I’m going at 100 miles an hour and receive such a large volume of emails daily, these attacks are extremely well disguised. You have to rely on technology to catch the bad guys.
Nicole: I absolutely agree. And that’s exactly where our Autonomous Response technology comes in. It’s constantly working in the background, not needing human action, and stopping attackers from even hitting your desktop. Which leads us on to my next question: what are some of the cyber security tips you would share with other high-level executives?
Zak: I take security very seriously – I’ve seen it and experienced it. During the course of the pandemic, the digital landscape has expanded and opened up more opportunities for the bad guys to try and get in. In my opinion, it’s only going to get worse, and so I’d say that a priority for me is to make sure other high-level executives are fully aware that we’re staying cutting edge with Darktrace.
Nicole: Well, with the pace of innovation at McLaren, the level of IP you have and the risk of physical disruption a cyber-attack could cause, it’s great to hear how seriously you take cyber security.
So in wrapping up, I know there’s huge excitement building for the race in Miami this weekend. How important will this new race be in garnering excitement about Formula 1 across the US?
Zak: Formula 1 has really taken off now across North America and this weekend is going to be huge: tickets have sold out, the track looks amazing… it’s the hottest ticket in Formula 1 right now. Netflix has worked wonders for Formula 1 around the world, especially in the US, and broadcast numbers are growing rapidly. With all these factors working together, I think Formula 1 has successfully penetrated North America and is going to go from strength to strength.
Nicole: Well, thank you for your time today Zak and best of luck to you and the whole McLaren team this weekend…
Zak: Thanks Nicole, and my pleasure.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Zak Brown
CEO, McLaren Racing
As Chief Executive Officer of McLaren Racing, Zak Brown has overall responsibility for the business, including strategic direction, operational performance, marketing and commercial development. In his role, Zak leads McLaren’s direction and involvement in professional motorsport, spearheaded by the McLaren Formula 1 team. Operating at the pinnacle of global motorsport, McLaren uses the white heat of competition to drive innovation and develop synergies across the group.
Bytesize Security: Insider Threats in Google Workspace
What is an insider threat?
An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.
Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.
For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.
Attack overview: Insider threat
In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.
While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.
Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.
In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.
Conclusion
Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.
Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.
Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
Darktrace Model Detections
SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File
RansomHub Ransomware: Darktrace’s Investigation of the Newest Tool in ShadowSyndicate's Arsenal
What is ShadowSyndicate?
ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].
What is RansomHub?
First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].
ShadowSyndicate and RansomHub
External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].
Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].
In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.
Darktrace’s coverage of ShadowSyndicate and RansomHub
Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.
Attack Overview
Internal Reconnaissance
The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.
C2 Communication and Data Exfiltration
In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.
Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.
Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.
Lateral Movement
In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.
The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.
Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.
File Encryption
Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.
Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.
In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.
Conclusion
The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.
For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.
Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)