Blog
/

Inside the SOC

/
February 26, 2023

Prevent Cryptojacking Attacks with Darktrace AI Technology

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Feb 2023
Protect your business from cryptojackers with Darktrace AI! Discover how your business can benefit round-the-clock defense with AI Cybersecurity.

Introduction: Crpyptojacking attacks

Despite the market value of cryptocurrency itself decreasing in the final quarter of 2022, the number of known cryptocurrency mining software variants had more than tripled compared to the previous year. The intensive resource demands of mining cryptocurrency has exacerbated the trend of malicious hijacking third-party computers causing slower processing speeds and higher energy bills for many companies.

Cryptomining is often overlooked by security teams but is indicative of a gap in an organization’s defense in depth technologies and represents unauthorized access to the digital estate. Ignoring cryptomining as a compliance issue can open the floodgates to further compromises and continued access to organizational resources by threat actors.

Although having a security team able to react to and investigate malicious resource hijacking attempts is essential, there will inevitably be occasions when relying on human response alone is not enough. Having a round-the-clock autonomous decision maker able to respond instantaneously is paramount to ensuring a 24/7 defense strategy.

In August 2022, Darktrace detected and responded to an ongoing incident of attempted cryptojacking on the network of a customer in the logistics sector, when a threat actor launched their attack outside of normal business hours in an effort to evade the detection of the human security team. This blog explores how Darktrace AI Analyst and the human SOC team worked in tandem to detect and contain this threat, while providing unparalleled visibility to the customer.

Darktrace coverage of cryptojacking

The initial compromise was detected when Darktrace / NETWORK observed a new user agent on a customer server attempting to connect to an external endpoint that was rarely visited outside of business hours. Darktrace AI Analyst autonomously investigated the endpoint and determined that it redirected to a domain which downloaded an executable file (.exe). Following this, the device began making connections to endpoints associated with mining the Monero cryptocurrency, which automatically triggered an Enhanced Monitoring model, whereupon the Darktrace SOC team sent a Proactive Threat Notification (PTN) to the customer, alerting their security team to this anomalous activity. 

The Darktrace SOC team liaised with the customer via the Ask the Expert (ATE) service, and confirmed the activity, initially reported by Darktrace’s AI Analyst investigation, was related to malicious cryptomining activity. Thereafter, Darktrace's Autonomous Response took immediate action by isolating six critical servers to contain the malicious cryptomining activity and prevent any further compromise.

Figure 1: Screenshot of AI Analyst detecting connections to a rare endpoint on port 9852 to URI //c/root /. Status code of 301 indicated a redirect.
Figure 2: Screenshot of AI Analyst’s detection and summary of a suspicious file, named ‘bean’, being downloaded via wget from a rare external endpoint.

The attack vector of the cryptomining malware was determined through a packet capture (PCAP) of the suspicious file detected by AI Analyst. The PCAP showed that following the initial download of the file, it modified its own permissions to become an executable. While the Darktrace SOC team continued its investigation, the customer was able to maintain contact with the team and gain full visibility over their network through the Darktrace Mobile App. 

Figure 3: Screenshot showing Darktrace’s AI Analyst detection of the cryptomining activity taking place on the customer network. 

Working in tandem, Darktrace was able to instantly identify and investigate the anomalous activity in real time and followed this up with an autonomous investigation with Darktrace AI Analyst, without the need for any human interaction. The Darktrace SOC team was then able supplement this autonomous response, providing precious reaction time for the customer to identify and mitigate this cryptojacking incident. 

Figure 4: Screenshot of the Packet Capture (PCAP) downloaded via the Darktrace UI during the SOC team’s deep packet inspection.

Interestingly, the IP addresses associated with this cryptomining had not been previously reported by open-source intelligence (OSINT) sources, with VirusTotal listing the first public scan as the same date as this attack. This reflects Darktrace’s ability to detect and respond to novel and previously undetected threats as soon as they arise directly through its AI capabilities.

Figure 5: Screenshot of VirusTotal results for the same file name, from the offending IP.
Figure 6: Screenshot of the URL portion of VirusTotal displaying the date, detections, HTTP status codes alongside the relevant URL.

Conclusion

The continued prevalence of malicious cryptomining software underlines the need for instantaneous and autonomous defenses. In addition to hardening an organization’s attack surface, responding to more compliance-focused threats like cryptomining will enable organizations to close gaps which lead to more damaging compromises. Darktrace’s suite of products offers both an AI-driven system which alerts users to malicious downloads and connections, and a dedicated SOC team which works in tandem with its AI to advise security teams and assist them in containing threats at their earliest stages.

In this case, the cryptomining malware was quickly identified and mitigated despite occurring outside of business hours, and there being a lack of OSINT information regarding its indicators of compromise. Leveraging AI gives security teams a round-the-clock defense that responds instantaneously to even novel threats. When combined with human SOC teams, Darktrace offers a formidable defense against an ever-growing sophisticated threat landscape.  

Credit to: Victoria Baldie, Director of Analysis.

Appendices

Darktrace Model Detections 

Below is a list of model breaches in order of trigger. 

  • Model Breach: Compromise / High Priority Crypto Currency Mining 
  • Model Breach: Device / Initial Breach Chain Compromise 
  • Model Breach: Compromise / Monero Mining 

IOCs

165.227.154[.]84 - IP Address - C2 Endpoint

c0136a24781c4ebcafb3c9fdeb22681f6df814b4 - SHA-256 - File downloaded

MITRE AT&CK Mapping

Lateral Movement:

T1210 - Exploit of Remote Services

Command and Control:

T1001 - Data Obfuscation 

T1571 - Non-Standard Port

T1095 – Non-Application Layer Port

T1071 – Web Protocols

Initial Access:

T1189 – Drive by Compromise

Resource Deployment:

T1588 – Malware

References

[1] https://securelist.com/cryptojacking-report-2022/107898/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Victoria Baldie
Director of Analysis, ANZ
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI