Blog
/
No items found.
/
September 23, 2024

How AI can help CISOs navigate the global cyber talent shortage

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Sep 2024
The global cybersecurity skills gap is widening, leaving many organizations vulnerable to increasing cyber threats. This blog explores how CISOs can implement AI strategies to make the most of their existing workforce through automation, consolidation and education.

The global picture

4 million cybersecurity professionals are needed worldwide to protect and defend the digital world – twice the number currently in the workforce.1

Innovative technologies are transforming business operations, enabling access to new markets, personalized customer experiences, and increased efficiency. However, this digital transformation also challenges Security Operations Centers (SOCs) with managing and protecting a complex digital environment without additional resources or advanced skills.

At the same time, the cybersecurity industry is suffering a severe global skills shortage, leaving many SOCs understaffed and under-skilled. With a 72% increase in data breaches from 2021-20232, SOCs are dealing with overwhelming alert volumes from diverse security tools. Nearly 60% of cybersecurity professionals report burnout3, leading to high turnover rates. Consequently, only a fraction of alerts are thoroughly investigated, increasing the risk of undetected breaches. More than half of organizations that experienced breaches in 2024 admitted to having short-staffed SOCs.4

How AI can help organizations do more with less

Cyber defense needs to evolve at the same pace as cyber-attacks, but the global skills shortage is making that difficult. As threat actors increasingly abuse AI for malicious purposes, using defensive AI to enable innovation and optimization at scale is reshaping how organizations approach cybersecurity.

The value of AI isn’t in replacing humans, but in augmenting their efforts and enabling them to scale their defense capabilities and their value to the organization. With AI, cybersecurity professionals can operate at digital speed, analyzing vast data sets, identifying more vulnerabilities with higher accuracy, responding and triaging faster, reducing risks, and implementing proactive measures—all without additional staff.

Research indicates that organizations leveraging AI and automation extensively in security functions—such as prevention, detection, investigation, or response—reduced their average mean time to identify (MTTI) and mean time to contain (MTTC) data breaches by 33% and 43%, respectively. These organizations also managed to contain breaches nearly 100 days faster on average compared to those not using AI and automation.5

First, you've got to apply the right AI to the right security challenge. We dig into how different AI technologies can bridge specific skills gaps in the CISO’s Guide to Navigating the Cybersecurity Skills Shortage.

Cases in point: AI as a human force multiplier

Let’s take a look at just some of the cybersecurity challenges to which AI can be applied to scale defense efforts and relieve the burden on the SOC. We go further into real-life examples in our white paper.

Automated threat detection and response

AI enables 24/7 autonomous response, eliminating the need for after-hours SOC shifts and providing security leaders with peace of mind. AI can scale response efforts by analyzing vast amounts of data in real time, identifying anomalies, and initiating precise autonomous actions to contain incidents, which buys teams time for investigation and remediation.  

Triage and investigation

AI enhances the triage process by automatically categorizing and prioritizing security alerts, allowing cybersecurity professionals to focus on the most critical threats. It creates a comprehensive picture of an attack, helps identify its root cause, and generates detailed reports with key findings and recommended actions.  

Automation also significantly reduces overwhelming alert volumes and high false positive rates, enabling analysts to concentrate on high-priority threats and engage in more proactive and strategic initiatives.

Eliminating silos and improving visibility across the enterprise

Security and IT teams are overwhelmed by the technological complexity of operating multiple tools, resulting in manual work and excessive alerts. AI can correlate threats across the entire organization, enhancing visibility and eliminating silos, thereby saving resources and reducing complexity.

With 88% of organizations favoring a platform approach over standalone solutions, many are consolidating their tech stacks in this direction. This consolidation provides native visibility across clouds, devices, communications, locations, applications, people, and third-party security tools and intelligence.

Upskilling your existing talent in AI

As revealed in the State of AI Cybersecurity Survey 2024, only 26% of cybersecurity professionals say they have a full understanding of the different types of AI in use within security products.6

Understanding AI can upskill your existing staff, enhancing their expertise and optimizing business outcomes. Human expertise is crucial for the effective and ethical integration of AI. To enable true AI-human collaboration, cybersecurity professionals need specific training on using, understanding, and managing AI systems. To make this easier, the Darktrace ActiveAI Security Platform is designed to enable collaboration and reduce the learning curve – lowering the barrier to entry for junior or less skilled analysts.  

However, to bridge the immediate expertise gap in managing AI tools, organizations can consider expert managed services that take the day-to-day management out of the SOC’s hands, allowing them to focus on training and proactive initiatives.

Conclusion

Experts predict the cybersecurity skills gap will continue to grow, increasing operational and financial risks for organizations. AI for cybersecurity is crucial for CISOs to augment their teams and scale defense capabilities with speed, scalability, and predictive insights, while human expertise remains vital for providing the intuition and problem-solving needed for responsible and efficient AI integration.

If you’re thinking about implementing AI to solve your own cyber skills gap, consider the following:

  • Select an AI cybersecurity solution tailored to your specific business needs
  • Review and streamline existing workflows and tools – consider a platform-based approach to eliminate inefficiencies
  • Make use of managed services to outsource AI expertise
  • Upskill and reskill existing talent through training and education
  • Foster a knowledge-sharing culture with access to knowledge bases and collaboration tools

Interested in how AI could augment your SOC to increase efficiency and save resources? Read our longer CISO’s Guide to Navigating the Cybersecurity Skills Shortage.

And to better understand cybersecurity practitioners' attitudes towards AI, check out Darktrace’s State of AI Cybersecurity 2024 report.

References

  1. https://www.isc2.org/research  
  2. https://www.forbes.com/advisor/education/it-and-tech/cybersecurity-statistics/  
  3. https://www.informationweek.com/cyber-resilience/the-psychology-of-cybersecurity-burnout  
  4. https://www.ibm.com/downloads/cas/1KZ3XE9D  
  5. https://www.ibm.com/downloads/cas/1KZ3XE9D  
  6. https://darktrace.com/resources/state-of-ai-cyber-security-2024
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
The Darktrace Community
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI